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Comment: Monitoring Networked
Applications With Incremental
Quantile Estimation
Bin Yu

First of all, we would like to thank the authors for
their timely paper focusing on the important area of
streaming data. Recently, much attention has been paid
by the statistics community to the high dimensionality
or massiveness of data in the information technology
age. However, streaming data represent the other im-
portant feature of the IT age, the high rate of data. Both
high dimensionality and high rate require fast compu-
tation, but the real-time constraint on streaming data
forces its computation to be a magnitude faster than
that of the off-line or batch mode of massive data. As
a result, in the absence of supercomputers, the algo-
rithms for streaming data have to be very simple to be
effective.

Chambers et al. deal with streaming data for com-
puter system monitoring. Streaming data arise also in
many other fields of science and engineering, such as
astronomy, geoscience and sensor networks. Chambers
et al. devise a simple and practical algorithm for updat-
ing quantiles to be used to monitor the reliability of
a large system based on streamed data. Stationarity is
implicitly assumed since one could argue that a good
computer system should be more or less stable over
time until the system is updated.

A desirable add-on to the estimated quantile of
Chambers et al. is a measure of uncertainty which in
the i.i.d. case is trivial because of the relationship be-
tween the variance and mean of a binomial random
variable. However, it is hard to imagine that a com-
puter system follows an i.i.d. process. The real-time
constraint could make the pursuit of an uncertainty
measure harder than the quantile estimation itself.

For a natural environment to be monitored by a sen-
sor network, the variable of interest (say, temperature)
is most likely to be changing over time and hence non-
stationary. Fortunately, there is an easy extension of the
Chambers et al. algorithm to the nonstationary case.
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Because we can build the CDF and therefore the quan-
tiles based on a moving window of data, it is applicable
to nonstationary data streams. However, in this case,
the data have to be kept over a duration of the size of
the moving window W , in addition to the current esti-
mate of the CDF.

Formally, let W denote the size of the moving
time window which is application-specific to guaran-
tee some stationarity of the variable within the win-
dow. Let O denote the initial block of (old) data to
be removed when new data come in, K the data block
kept and N the new block to be taken into account:
|W | = |O| + |K| and |O| = |N |.

Since the current empirical count of observations
less than any x is a summation of the indicator func-
tion of the interval (−∞, x] over the current block of
data (over K and N ), it can be obtained by using the
last empirical count and the summation over the old
block:

∑

t∈current block
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= ∑
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= ∑
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I{Xt≤x} + ∑

t∈N
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+ ∑

t∈O

I{Xt≤x} − ∑

t∈O

I{Xt≤x}

= ∑

t∈O

I{Xt≤x} + ∑

t∈K

I{Xt≤x}

+ ∑

t∈N

I{Xt≤x} − ∑

t∈O

I{Xt≤x}

= ∑

t∈previous block

I{Xt≤x}

+ ∑

t∈N

I{Xt≤x} − ∑

t∈O

I{Xt≤x}.

With proper scaling and weighting, the empirical CDF
for the current block can be easily updated based on the
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