
Statistical Science
2005, Vol. 20, No. 4, 347–350
DOI 10.1214/088342305000000458
© Institute of Mathematical Statistics, 2005

Comment: A Selective Overview of
Nonparametric Methods in
Financial Econometrics
Per A. Mykland and Lan Zhang

We would like to congratulate Jianqing Fan for an
excellent and well-written survey of some of the lit-
erature in this area. We will here focus on some of
the issues which are at the research frontiers in finan-
cial econometrics but are not covered in the survey.
Most importantly, we consider the estimation of actual
volatility. Related to this is the realization that financial
data is actually observed with error (typically called
market microstructure), and that one needs to consider
a hidden semimartingale model. This has implications
for the Markov models discussed above.

For reasons of space, we have not included refer-
ences to all the relevant work by the authors that are
cited, but we have tried to include at least one refer-
ence to each of the main contributors to the realized
volatility area.

1. THE ESTIMATION OF ACTUAL VOLATILITY:
THE IDEAL CASE

The paper discusses the estimation of Markovian
systems, models where the drift and volatility coeffi-
cients are functions of timet or statex. There is, how-
ever, scope for considering more complicated systems.
An important tool in this respect is the direct estima-
tion of volatility based on high-frequency data. One
considers a system of, say, log securities prices, which
follows:

dXt = µt dt + σt dBt ,(1)

whereBt is a standard Brownian motion. Typically,µt ,
the drift coefficient, andσ 2

t , the instantaneous variance
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(or volatility) of the returns processXt , will be sto-
chastic processes, but these processes can depend on
the past in ways that need not be specified, and can be
substantially more complex than a Markov model. This
is known as anItô process.

A main quantity of econometric interest is to obtain

time series of the form�i = ∫ T +
i

T −
i

σ 2
t dt , i = 1,2, . . . .

HereT −
i andT +

i can, for example, be the beginning
and the end of day numberi. �i is variously known
as theintegrated variance (or volatility) or quadratic
variation of the processX. The reason why one can
hope to obtain this series is as follows. IfT −

i = t0 <

t1 < · · · < tn = T +
i spans day numberi, define there-

alized volatility by

�̂i =
n−1∑

j=0

(
Xtj+1 − Xtj

)2
.(2)

Then stochastic calculus tells us that

�i = lim
max|tj+1−tj |→0

�̂i .(3)

In the presence of high frequency financial data, in
many cases with transactions as often as every few sec-
onds, one can, therefore, hope to almostobserve �i .
One can then either fit a model to the series of�̂i , or
one can use it directly for portfolio management (as
in [12]), options hedging (as in [29]), or to test good-
ness of fit [31].

There are too many references to the relationship (3)
to name them all, but some excellent treatments can
be found in [27], Section 1.5; [26], Theorem I.4.47
on page 52; and [33], Theorem II-22 on page 66. An
early econometric discussion of this relationship can
be found in [2].

To make it even more intriguing, recent work both
from the probabilistic and econometric sides gives
the mixed normal distribution of the error in the ap-
proximation in (3). References include [6, 25, 31].

The random variance of the normal error is 2
T +

i −T −
i

n
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