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1. INTRODUCTION there is no way we can know whetha&p is small

Professor Fan should be congratulated for his review o large becauses, will alway_s tend to be small. i
that convincingly demonstrates the usefulness of non-! Suspect that the nonparametric methods outlined in
parametric techniques to financial econometric prob- Sect_lons 3.2 and 3.5 might suffer from a similar short—_
lems. He is mainly concerned with financial models cOming as they are based on the same type of approxi-
given by stochastic differential equations, that is, dif- Mation as the Euler scheme.
fusion processes. | will therefore complement his se- A simple solution to this problem is to use an ap-
lective review by discussing some important problems proximate likelihood function where the transition den-
and useful methods for diffusion models that he has sity is replaced by a normal distribution with mean
not covered. My concern will mainly, but not solely, be equal to the exact conditional expectatiéiix, §) =
with parametric techniques. A recent comprehensive Eq4(X 2| Xo = x) and with the variance equal to the ex-
survey of parametric inference for discretely sampled act conditional varianc® (x; 6) = Varg (X a|Xo = x).
diffusion models can be found in [19]. Here 6 is the (typically multivariate) parameter to
be estimated. This approach is exactly the same as
using quadratic martingale estimating functions; see

In his brief review of parametric methods, Profes- [3] and [20]. The estimators obtained from quadratic
sor Fan mentions the Gaussian approximate likelihoodmartingale estimating functions have the same nice
function based on the Euler scheme and states that thigroperties for high frequency observations (smglas
method has some bias when the time between observathe estimators based on the Euler likelihood, but they
tionsA is large. This is actually a very serious problem. are consistent for any value af and can thus be used
AsS an example, consider a model with a linear dA”ft of whether or notA is small. In most cases there is no ex-
the formpu(x) = —f(x —«) (8 > 0). The estimatof,  pjicit expression for the functiong(x, 8) and® (x; 6),
of f obtained from the Gaussian approximate likeli- g4 often they must be determined by simulation. This
hood based on the Euler scheme converges to requires, however, only a modest amount of computa-

(1— e PoAya~? tion and is not a problem in practice. If a completely

as the number of observations tends to infinity. explicit likelihood is preferred, one can approximate

Here o denotes the true parameter value. The limiting F(x,0) and ®(x; 6) by expansions OT a higher order
value of A, is always smaller than one, and the limit than those used in the Euler scheme; see [16].

of B, is always smaller tham~1. Thus the asymp- The nonparametric method in Section 3.5 could
totic bias can be huge i is large. A simulation study ~ Probably be improved in a similar way by using in
in [3] demonstrates that also for finite sample sizes an(27) and (28) the functiong'(x, 0) and ®(x; ) (or
enormous bias can occur. Whegg is small so that  the higher-order expansions in [16]) instead of the first-
(1 — e Po2)A~1 =~ gy, the asymptotic bias is negligi- order approximation used in the Euler scheme.

ble. The problem is, however, that if we use the approx-

imate likelihood function based on the Euler scheme, 3. MARTINGALE ESTIMATING EUNCTIONS

2. GAUSSIAN LIKELIHOOD FUNCTIONS
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