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1. INTRODUCTION

Professor Fan should be congratulated for his review
that convincingly demonstrates the usefulness of non-
parametric techniques to financial econometric prob-
lems. He is mainly concerned with financial models
given by stochastic differential equations, that is, dif-
fusion processes. I will therefore complement his se-
lective review by discussing some important problems
and useful methods for diffusion models that he has
not covered. My concern will mainly, but not solely, be
with parametric techniques. A recent comprehensive
survey of parametric inference for discretely sampled
diffusion models can be found in [19].

2. GAUSSIAN LIKELIHOOD FUNCTIONS

In his brief review of parametric methods, Profes-
sor Fan mentions the Gaussian approximate likelihood
function based on the Euler scheme and states that this
method has some bias when the time between observa-
tions� is large. This is actually a very serious problem.
As an example, consider a model with a linear drift of
the formµ(x) = −β(x − α) (β > 0). The estimator̂βn

of β obtained from the Gaussian approximate likeli-
hood based on the Euler scheme converges to

(1− e−β0�)�−1

as the number of observationsn tends to infinity.
Hereβ0 denotes the true parameter value. The limiting
value of�β̂n is always smaller than one, and the limit
of β̂n is always smaller than�−1. Thus the asymp-
totic bias can be huge if� is large. A simulation study
in [3] demonstrates that also for finite sample sizes an
enormous bias can occur. When�β0 is small so that
(1 − e−β0�)�−1 ≈ β0, the asymptotic bias is negligi-
ble. The problem is, however, that if we use the approx-
imate likelihood function based on the Euler scheme,
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there is no way we can know whether�β0 is small
or large because�β̂n will always tend to be small.
I suspect that the nonparametric methods outlined in
Sections 3.2 and 3.5 might suffer from a similar short-
coming as they are based on the same type of approxi-
mation as the Euler scheme.

A simple solution to this problem is to use an ap-
proximate likelihood function where the transition den-
sity is replaced by a normal distribution with mean
equal to the exact conditional expectationF(x, θ) =
Eθ(X�|X0 = x) and with the variance equal to the ex-
act conditional variance�(x; θ) = Varθ (X�|X0 = x).
Here θ is the (typically multivariate) parameter to
be estimated. This approach is exactly the same as
using quadratic martingale estimating functions; see
[3] and [20]. The estimators obtained from quadratic
martingale estimating functions have the same nice
properties for high frequency observations (small�) as
the estimators based on the Euler likelihood, but they
are consistent for any value of� and can thus be used
whether or not� is small. In most cases there is no ex-
plicit expression for the functionsF(x, θ) and�(x; θ),
so often they must be determined by simulation. This
requires, however, only a modest amount of computa-
tion and is not a problem in practice. If a completely
explicit likelihood is preferred, one can approximate
F(x, θ) and�(x; θ) by expansions of a higher order
than those used in the Euler scheme; see [16].

The nonparametric method in Section 3.5 could
probably be improved in a similar way by using in
(27) and (28) the functionsF(x, θ) and �(x; θ) (or
the higher-order expansions in [16]) instead of the first-
order approximation used in the Euler scheme.

3. MARTINGALE ESTIMATING FUNCTIONS

More generally, martingale estimating functions pro-
vide a simple and versatile technique for estimation
in discretely sampled parametric stochastic differential
equation models that works whether or not� is small.
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