
Statistical Science
2007, Vol. 22, No. 4, 560–568
DOI: 10.1214/07-STS227A
Main article DOI: 10.1214/07-STS227
© Institute of Mathematical Statistics, 2007

Comment: Understanding OR, PS and DR
Zhiqiang Tan

We congratulate Kang and Schafer (KS) on their ex-
cellent article comparing various estimators of a popu-
lation mean in the presence of missing data, and thank
the Editor for organizing the discussion. In this com-
munication, we systematically examine the propen-
sity score (PS) and the outcome regression (OR) ap-
proaches and doubly robust (DR) estimation, which are
all discussed by KS. The aim is to clarify and better our
understanding of the three interrelated subjects.

Sections 1 and 2 contain the following main points,
respectively.

(a) OR and PS are two approaches with different
characteristics, and one does not necessarily dominate
the other. The OR approach suffers the problem of
implicitly making extrapolation. The PS-weighting ap-
proach tends to yield large weights, explicitly indicat-
ing uncertainty in the estimate.

(b) It seems more constructive to view DR estima-
tion in the PS approach by incorporating an OR model
rather than in the OR approach by incorporating a PS
model. Tan’s (2006) DR estimator can be used to im-
prove upon any initial PS-weighting estimator with
both variance and bias reduction.

Finally, Section 3 presents miscellaneous comments.

1. UNDERSTANDING OR AND PS

For a population, let X be a vector of (pretreatment)
covariates, T be the treatment status, Y be the observed
outcome given by (1−T )Y0 +T Y1, where (Y0, Y1) are
potential outcomes. The observed data consist of inde-
pendent and identically distributed copies (Xi, Ti, Yi),
i = 1, . . . , n. Assume that T and (Y0, Y1) are condi-
tionally independent given X. The objective is to esti-
mate

μ1 = E(Y1),

μ0 = E(Y0),
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and their difference, μ1 − μ0, which gives the aver-
age causal effect (ACE). KS throughout focused on the
problem of estimating μ1 from the data (Xi, Ti, TiYi),
i = 1, . . . , n, only, noting in Section 1.2 that estimation
of the ACE can be separated into independent estima-
tion of the means μ1 and μ0. We shall in Section 3 dis-
cuss subtle differences between causal inference and
solving two separate missing-data problems, but until
then we shall restrict our attention to estimation of μ1
from (Xi, Ti, TiYi) only.

The model described at this stage is completely
nonparametric. No parametric modeling assumption
is made on either the regression function m1(X) =
E(Y |T = 1,X) or the propensity score π(X) = P(T =
1|X). Robins and Rotnitzky (1995) and Hahn (1998)
established the following fundamental result for semi-
parametric (or more precisely, nonparametric) estima-
tion of μ1.

PROPOSITION 1. Under certain regularity condi-
tions, there exists a unique influence function, which
hence must be the efficient influence function, given by

τ1 = T

π(X)
Y − μ1 −

(
T

π(X)
− 1

)
m1(X)

= m1(X) − μ1 + T

π(X)

(
Y − m1(X)

)
.

The semiparametric variance bound (i.e., the lowest
asymptotic variance any regular estimator of μ1 can
achieve) is n−1E2(τ1).

The semiparametric variance bound depends on both
m1(X) and π(X). The bound becomes large or even
infinite whenever π(X) ≈ 0 for some values of X. In-
tuitively, it becomes difficult to infer the overall mean
of Y1 in this case, because very few values of Y1 are
observed among subjects with π(X) ≈ 0. The diffi-
culty holds whatever parametric approach, OR or PS,
is taken for inference, although the symptoms can be
different. This point is central to our subsequent dis-
cussion.

The problem of estimating μ1 is typically handled
by introducing parametric modeling assumptions on ei-
ther m1(X) or π(X). The OR approach is to specify an
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