NOTES

ON STANDARD ERROR FOR THE LINE OF MUTUAL REGRESSION

By Y. K. Wong

1. In Pearson's On Lines and Planes of Closest Fit to System of Points in Space, he establishes a formula for the mean square residual for the best fitting line in q-space:

(1) (mean sq. residual)² =
$$\sigma_{x_1}^2 + \cdots + \sigma_{x_q}^2 - \Delta R_{\text{max}}^2$$

where $2R_{\text{max}}$ is the length of the maximum axis of the correlation ellipse in q-space, and Δ is the correlation determinant.¹

In the present paper, we consider a 2-dimensional case, and shall call the mean sq. residual as the standard error, denoted by S_N .

In 2-dimensional space, a correlation ellipse is

$$ax^2 + 2hxy + by^2 + c = 0,$$

where

(2a)
$$a = \sigma_y^2$$
, $b = \sigma_x^2$, $h = -r_{xy}\sigma_x\sigma_y = -p_{xy} = -p_{yx}$, $c = -\sigma_x^2\sigma_y^2$.

Pearson gives in the 2-dimensional space the following formula for S_N :

(3)
$$S_N = \sigma_x \sigma_y / \text{semi-major axis of equation (2)}.$$

Expression (3) can be readily deduced from (1). This paper aims to present some formulae for S_N , more convenient for practical computation, and also call attention to a misprint in Pearson's paper.

2. From analytic geometry, we see that the angle φ , between the major axis of the ellipse (2) and the x-axis is given by

$$\tan 2\varphi = 2h/(a-b).$$

By rotation of the axes, equation (1) can be written in the form

$$(5) a'x^2 + b'y^2 + c = 0,$$

where

(5a)
$$a' = a \cdot \cos^2 \varphi - 2h \cdot \sin \varphi \cdot \cos \varphi - b \cdot \sin^2 \varphi > 0$$
$$b' = a \cdot \sin^2 \varphi - 2h \cdot \sin \varphi \cdot \cos \varphi - b \cdot \cos^2 \varphi > 0.$$

¹ Philosophical Magazine, 6th Series, II (November, 1901), p. 559.