CORRECTION TO "NONPARAMETRIC REGRESSION USING DEEP NEURAL NETWORKS WITH RELU ACTIVATION FUNCTION"

BY JOHANNES SCHMIDT-HIEBER^{1,a} AND DON VU^{2,b}

¹*Department of Applied Mathematics, University of Twente,* ^a*a.j.schmidt-hieber@utwente.nl* ²*Department of Mathematics, Vrije Universiteit Amsterdam,* ^b*don@abnormalstatistics.nl*

Correction: Condition (ii) of Theorem 1 in [1] should be changed to

$$
(ii'):\quad \sum_{i=0}^q\frac{\beta_i+t_i}{2\beta_i^*+t_i}\log_2(4t_i\vee 4\beta_i)\log_2(n)\leq L\lesssim n\phi_n.
$$

Moreover, the constants *C*, *C'* in Theorem 1 also depend on the implicit constants that appear in conditions (ii)–(iv). There are large regimes where the new condition (ii') is weaker than (ii).

Explanation: Rather than choosing *m* and *N* in the proof of Theorem 1 globally, one should instead apply Theorem 5 individually to each *i* with

$$
m_i := \left\lceil \frac{\beta_i + t_i}{2\beta_i^* + t_i} \log_2(n) \right\rceil \quad \text{and} \quad N_i := \left\lceil c n^{t_i/(2\beta_i^* + t_i)} \right\rceil,
$$

where $0 < c \leq 1/2$ is a sufficiently small constant. As mentioned at the beginning of the proof of Theorem 1, it is sufficient to prove the result for sufficiently large *n*. Therefore, we can assume that $m_i \ge 1$ for all $i = 0, \ldots, q$ and $N_i \le n^{t_i/(2\beta_i^* + t_i)}$. The latter implies $N_i 2^{-m_i} \le$ $N_i(n^{-\frac{t_i}{2\beta_i^*+t_i}})^{\frac{\beta_i+t_i}{t_i}} \leq N_i^{-\frac{\beta_i}{t_i}}$. If we now define $L'_i := 8 + (m_i + 5)(1 + \lceil \log_2(t_i \vee \beta_i) \rceil)$, then there exists a network $h_{ij} \in \mathcal{F}(L'_i, (t_i, 6(t_i + \lceil \beta_i \rceil)N_i, \ldots, 6(t_i + \lceil \beta_i \rceil)N_i, 1), s_i)$ with $s_i \leq$ $141(t_i + \beta_i + 1)^{3+t_i} N_i(m_i + 6)$, such that

(1)
$$
\|\widetilde{h}_{ij} - h_{ij}\|_{L^{\infty}([0,1]^{l_i})} \leq (2Q_i + 1)(1 + t_i^2 + \beta_i^2)6^{t_i} N_i 2^{-m_i} + Q_i 3^{\beta_i} N_i^{-\frac{\beta_i}{t_i}} \n\leq ((2Q_i + 1)(1 + t_i^2 + \beta_i^2)6^{t_i} + Q_i 3^{\beta_i}) N_i^{-\frac{\beta_i}{t_i}},
$$

where Q_i is any upper bound of the Hölder norms of h_{ij} , $j = 1, \ldots, d_{i+1}$. We can now argue as in the original proof to show that the composite network f^* is in the class $\mathcal{F}(E, (d, 6r_i \max_i N_i, \ldots, 6r_i \max_i N_i, 1), \sum_{i=0}^{q} d_{i+1}(s_i + 4))$, with $E := 3q + \sum_{i=0}^{q} L'_i$. Using the definition of L'_i above, it can be shown as in the original proof that $E \leq$ ∇^q *i*=0 $\frac{\beta_i + t_i}{2\beta_i^* + t_i}$ (log₂(4) + log₂(t_i ∨ β_i)) log₂(n) for all sufficiently large *n*. All remaining steps are the same as in the original proof of Theorem 1. The constant c in the definition of N_i will also depend on the implicit constant in the conditions $L \leq n\phi_n$, $n\phi_n \leq \min_{i=1,\dots,L} p_i$ and $s \asymp n \phi_n \log n$.

Further comments:

- Lemma 1 requires that the constant *K* is large enough such that Theorem 3 is applicable.
- $-$ First display on page 1886: The value t_2 is *N* not *Nd*.
- Equation (18) also requires that the inputs are nonnegative.
- \blacksquare In Lemma 3, the *L*∞-norms should be replaced by the supremum, that is, $\|f\|_{L^{\infty}(A)}$ should be changed to $\sup_{\mathbf{x} \in A} |f(\mathbf{x})|$.

Received December 2023.