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In the article titled “Noncoercive Perturbed Densely De	ned
Operators and Application to Parabolic Problems” [1], there
was an error in �eorem 8. �e operator 𝐿 : 𝑋 ⊇ 𝐷(𝐿) →
𝑋∗ is assumed to be linear, closed, densely de	ned, and
monotone. However, it is required to replace this assumption
on 𝐿 by the condition that 𝐿 : 𝑋 ⊇ 𝐷(𝐿) → 𝑋∗ is
linear maximal monotone. It is known due to Brèzis (cf.
Zeidler [2, �eorem 32. L, p.897]) that every linear maximal
monotone operator is densely de	ned and closed. However,
the converse is not generally true unless 𝐿∗ is monotone. In
addition to conditions on 𝑆 in�eorem 8 in [1], monotonicity
assumption on 𝑆 (with 𝑆(0) = 0) is required. �e condition
⟨𝐿𝑥 + 𝑆𝑥, 𝑥⟩ ≥ −𝑑‖𝑥‖2 for all 𝑥 ∈ 𝐷(𝐿) is not required as it
is automatically satis	ed with 𝑑 = 0 because of monotonicity
of 𝐿 and 𝑆 with (𝐿 + 𝑆)(0) = 0. As a result, �eorem 8 in [1] is
restated and replaced by�eorem 1 as follows.

Theorem 1. Let 𝐿 : 𝑋 ⊇ 𝐷(𝐿) → 𝑋∗ be linear maximal
monotone and 𝑆 : 𝑋 ⊇ 𝐷(𝑆) → 𝑋∗ be quasibounded
demicontinuous andmonotone of type (𝑀)with𝐷(𝐿) ⊆ 𝐷(𝑆).
Assume, further, that there exist 𝛼 > 0 and 𝜇 ≥ 0 such that
exactly (i) or (ii) of the following conditions holds.

(i) ‖𝐿𝑥 + 𝑆𝑥‖ ≥ 𝛼‖𝑥‖ − 𝜇 for all 𝑥 ∈ 𝐷(𝐿).
(ii) There exists 𝜙 : [0,∞) → (−∞,∞) such that 𝜙(𝑡) →
∞ as 𝑡 → ∞ and

‖𝐿𝑥 + 𝑆𝑥‖ ≥ 𝜙 (‖𝑥‖) ‖𝑥‖ ∀𝑥 ∈ 𝐷 (𝐿) . (1)

Then 𝐿 + 𝑆 is surjective.

�e proof of �eorem 1 is completed by incorporating
the following changes in the proof of �eorem 8 in [1]. For

each 𝜀 > 0, let 𝐿
𝜀
denote the Yosida approximant of 𝐿. It is

well-known that 𝐿
𝜀
: 𝑋 → 𝑋∗ is bounded, continuous, and

monotone.
(a) In equation numbers (54) and (55), 𝐿 should be

replaced with 𝐿
𝜀
and 𝐽 should be replaced with 𝜓 in (55). In

equation numbers (57), (58), (59), (60), (62), (63), and (64),
𝐿 should be replaced with 𝐿

𝜀
.

(b) On lines numbers 8 and 9 from below (right column)
on page 8, 𝐿 should be replaced with 𝐿

𝜀𝑛
.

(c) �e text on lines 1, 2, and 3 from below on page
8 (right column) should be deleted, Corollary 9 and its
proof in [1, p.9] should be deleted, and the text reading
“�e following corollary gives a characterization of linear
maximal monotone operator in separable re�exive Banach
space” should be deleted. In addition, the text reading “It is
worth noticing that Brèzis proved (i) in arbitrary re�exive
Banach space provided that 𝐿∗ is monotone and (ii) holds. As
a result, Corollary 9 is an improvement of the result of Brèzis
when𝑋 is separable” should be deleted.

In the abstract, the text reading “A new characterization
of linear maximal monotone operator 𝐿 : 𝑋 ⊇ 𝐷(𝐿) → 𝑋∗ is
given as a result of surjectivity of 𝐿+𝑆, where 𝑆 is of type (𝑀)
with respect to 𝐿” should be deleted.
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