The diophantine equation $2^{n}=x^{2}+7$

By L. J. Mordell

This paper deals with the following
Theorem. The only solutions in integers $x>0$ of the equation

$$
\begin{equation*}
2^{n}=x^{2}+7 \tag{ㄴ}
\end{equation*}
$$

are given by

$$
\begin{align*}
& n=3, x=1, \\
& n=4, x=3, \\
& n=5, x=5, \tag{2}\\
& n=7, x=11, \\
& n=15, x=181 .
\end{align*}
$$

In 1913, Ramanujan gave these values (2) in Problem (465), page 120 of Vol. 5 of the Journal of the Indian Mathematical Society, and asked whether there were other values of n. In Ramanujan's collected works, there is a reference on pace 327 to "Solution by K. J. Sanjana and T. P. Trevedi on pages 227, 228 also o1 Vol. 5." This, however, is merely a verification for some values of n.

On page 272 of Nagell's Introduction to Number Theory, the theorem is set as a problem. The enunciation is preceded by the problem, to show by considering the quadratic field $R(\sqrt{-7})$ in which factorization is unique, that the only rational integer solutions of

$$
\begin{equation*}
x^{2}+x+2=y^{3} \tag{3}
\end{equation*}
$$

are given by $y=2$. It seems to be implied that the same method will suffice for a proof of the theorem.

The theorem was proved by Chowla, D. J. Lewis, and Skolem in a joint paper submitted in 1958 for publication in the Proceedings of the American Mathematical Society. ${ }^{1}$ The question was brought to my notice by Professor Chowla. I have found the preseni coution which is entirely different from theirs, which I had not seen when this paper was written.

[^0]
[^0]: ${ }^{1}$ It has since appeared in Vol. 10 (1959) 663-669. Professor Nagell now informs me that he published (in Norwegian) a simple proof of the theorem in the Norsk Matematisk Tidsskrift 30 (1948) 62-64.

