ARKIV FÖR MATEMATIK Band 1 nr 5

Communicated 10 November 1948 by F. Carlson and T. Nagell

On a diophantine equation in two unknowns

By Bengt Persson

§ 1.

The purpose of this paper is to examine the solvability in integers x and y of the equation

$$
\begin{equation*}
x^{2}+x+\frac{1}{4}(D+1)=y^{q} \tag{1}
\end{equation*}
$$

where D is a positive integer $\equiv 3$ (mod. 4) and q denotes an odd prime.
The special case $D=3$ has already been treated by T. Nagell, who showed that the equation ${ }^{1}$

$$
x^{2}+x+1=y^{n}
$$

is impossible in integers x and y, when $y \neq \pm 1$, for all whole exponents $n(>2)$ not being a power of 3 .
W. Ljungeren completed this result by proving that the equation ${ }^{2}$

$$
x^{2}+x+1=y^{3}
$$

has the only solutions $y=1$ and $y=7$. Thus it is sufficient in (1) to take $D \geqq 7$. We furthermore suppose that D has no squared factor >1.

According to a theorem of Axel Thue the equation (1) has only a finite number of solutions in integers x, and y, when D and q are given. ${ }^{3}$

$$
\S 2 .
$$

If we put $\varrho=\frac{1}{2}(-1+\sqrt{-D})$ and $\varrho^{\prime}=\frac{1}{2}(-1-\sqrt{-\bar{D}})$, the equation (1) can be written

$$
(x-\varrho)\left(x-\varrho^{\prime}\right)=y^{q}
$$

ϱ and ϱ^{\prime} are conjugate integers in the quadratic field $K(\sqrt{-D})$. The numbers $1, \varrho$ form a basis of the field.

The two principal ideals

$$
(x-\varrho) \quad \text { and } \quad\left(x-\varrho^{\prime}\right)
$$

are relatively prime. To show it we denote by \dot{j} their highest common divisor. The number $2 x+1=2 x-\left(\varrho+\varrho^{\prime}\right)$ is contained in $\dot{1}$ and also the number $D=-\left(\varrho-\varrho^{\prime}\right)^{2}$. If we write the equation (1) in the form

