Acta Math., 195 (2005), 265–266 © 2005 by Institut Mittag-Leffler. All rights reserved

Correction to "Uniformization of Kähler manifolds with vanishing Bochner tensor"

by

YOSHINOBU KAMISHIMA

Tokyo Metropolitan University Tokyo, Japan

The article appeared in Acta Math., 172 (1994), 299-308

In [2], we discussed the uniformization of Kähler manifolds with vanishing Bochner tensor, called Bochner–Kähler or Bochner-flat manifolds. The resulting uniformization theorem, Theorem A, was used to classify compact Bochner-flat Kähler manifolds. In Theorem A, we claimed that every Bochner-flat Kähler manifold is uniformized by one of four types of Hermitian symmetric space. Subsequent work by R. Bryant [1] has revealed that this statement is false and that there are many Bochner-flat Kähler manifolds which are not locally symmetric. In the compact case, however, the statement of our classification result turned out to be correct, and a proof was given in [1].

In order to explain the error and to indicate how it might be corrected, let us recall the argument. The main idea, due to Webster [3], is to observe that over any simplyconnected domain U in a Kähler 2n-manifold M, there is a CR structure on $p: U \times \mathbf{R} \to M$ whose contact form ω satisfies $d\omega = p^*\Omega$, where Ω is the Kähler form of M. The contact distribution ker ω is transverse to the fibres of p and is equipped with the lift of the complex structure on TM. There is a natural fibrewise \mathbf{R} -action by CR automorphisms.

If M is Bochner-flat, it follows from [3] that this CR structure is spherical, and therefore there is a developing map dev: $U \times \mathbf{R} \to S^{2n+1}$, together with an induced group homomorphism $\varrho: \mathbf{R} \to \mathrm{PU}(n+1, 1)$ into the group of CR automorphisms of S^{2n+1} . This pair is uniquely determined up to CR automorphism. We let G denote the closure of $\varrho(\mathbf{R})$ and X the complement of its fixed-point set in S^{2n+1} : since the natural fibrewise **R**-action is free and dev is an immersion, it follows that $\mathrm{dev}(U \times \mathbf{R}) \subset X$.

If we have a good open cover U_{α} of M, we have developing pairs $(\text{dev}_{\alpha}, \varrho_{\alpha})$ related by CR automorphisms on pairwise intersections, and (assuming that M is connected),