LOCALIZATION AND SUMMABILITY OF MULTIPLE FOURIER SERIES

BY

ELIAS M. STEIN

Cambridge, Mass., U.S.A.(1)

Introduction

1. Definitions

In this paper we shall deal with the theory of "spherical" summability of multiple Fourier series.

Let $f(x) = f(x_1, x_2 \dots x_k)$ be a Lebesgue integrable function defined on the fundamental cube Q_k , $-\pi < x_i \le \pi$, $i = 1, \dots k$, in Euclidean k-space. We form the Fourier series of f(x)

$$f(x) = \sum a_n e^{in \cdot x} = \sum a_{n_1 n_4 \cdots n_k} e^{i(n_1 x_1 \cdots + n_k x_k)}, \qquad (1.1)$$

where $n = (n_1, ..., n_k)$ is a vector with integral components, $n \cdot x = n_1 x_1 + n_2 x_2 \cdots + n_k x_k$, with

$$a_n = (2\pi)^{-k} \int_{Q_k} f(x) e^{-in \cdot x} dx,$$

and $dx = dx_1 dx_2 \dots dx_k$.

We next form the spherical Riesz means of order δ of f(x)

$$S_{R}^{\delta}(x) = S_{R}^{\delta}(x, f) = \sum_{|n| < R} \left(1 - \frac{|n|^{2}}{R^{2}} \right)^{\delta} a_{n} e^{in \cdot x}, \qquad (1.2)$$

where $|n| = (n_1^2 + \dots + n_k^2)^{\frac{1}{2}}$. Unless stated to the contrary, we shall assume that $k \ge 2$.

The general problem of the theory concerns itself with the validity (and meaning) of

$$\lim_{R \to \infty} S_R^{\delta}(x, f) = f(x), \tag{1.3}$$

for some appropriate δ .

^{(&}lt;sup>1</sup>) This research was supported by the United States Air Force under Contract No. AF 49 (638)-42, monitored by the AF Office of Scientific Research of the Air Research and Development Command.