ON THE STEADY-STATE SOLUTIONS OF THE NAVIER-STOKES EQUATIONS, III

 \mathbf{BY}

ROBERT FINN

Stanford University, Calif., U.S.A. (1)

Contents

			Page
Int	roduction		197
.]	Notation and definitions; preliminary estimates; the representation formula		201
2.	A priori estimation of the Dirichlet Integral		205
:	2 a) Estimation of the Dirichlet Integral in a bounded region		208
:	2 b) Estimation of the Dirichlet Integral in an exterior region; case of zero outflux		211
:	2 c) Estimation of the Dirichlet Integral in an exterior region; general case		213
3.	A priori estimation of the solution		215
	3 a) Estimation of the solution in a bounded region		218
	3 b) Estimation of the solution in an exterior region		
	Behaviour at infinity; the representation formula		
	Existence theorems		
	5 a) Existence of a solution in a finite region		226
	5 b) Existence of a solution in an exterior region		
	Remarks on the preceding sections; an example		
	Transition to zero Reynolds' Number		
	7 a) Transition to zero Reynold' Number; case of a bounded region		
	7 b) Transition to zero Reynolds' Number; exterior region		
	7 c) Transition of the force exerted on a fluid interface		
	Uniqueness and continuous dependence		
	Introduction		
	In this work we study the relations connecting a solution of the Navier	r-S1	tokes
equ	nations		
•	$\mu \triangle \mathbf{w} - \varrho \mathbf{w} \cdot \nabla \mathbf{w} - \nabla p = 0$		(1)
$\nabla \cdot \mathbf{w} = 0$,			

⁽¹⁾ This investigation was supported by the Office of Naval Research.