Non straightenable complex lines in \mathbb{C}^2

Franc Forstneric $(^1)$, Josip Globevnik $(^2)$ and Jean-Pierre Rosay $(^1)$

Abhyankar and Moh, in [1, (1.6), p. 151], and M. Suzuki, in [11, §5], proved that if P is a polynomial embedding of \mathbf{C} into \mathbf{C}^2 , then there exists ψ , a polynomial automorphism of \mathbf{C}^2 , such that $(\psi \circ P)(\mathbf{C}) = \mathbf{C} \times \{0\}$. The corresponding and much easier result has been proved for polynomial embeddings of \mathbf{C} into \mathbf{C}^n , for $n \ge 4$ by Z. Jelonek [7] (more generally, Jelonek treats the case of embeddings of \mathbf{C}^k into \mathbf{C}^n , for $n \ge 2k+2$). The case of polynomial embeddings of \mathbf{C} into \mathbf{C}^3 seems open. See also [8].

The main goal of this paper is to show that the above results do not generalize to holomorphic embeddings of \mathbf{C} . Another goal is an interpolation theorem (Proposition 2 below).

Proposition 1. Let n>1. There exists a proper holomorphic embedding $H: \mathbb{C} \to \mathbb{C}^n$ such that for no automorphism ψ of \mathbb{C}^n , $(\psi \circ H)(\mathbb{C}) = \mathbb{C} \times \{0\} \subset \mathbb{C}^n$.

Notice however that it has been proved in [4, (4.1)] that for every R>0 and $\varepsilon>0$ there exists ψ , an automorphism of \mathbb{C}^n , such that $|(\psi \circ H)(\zeta) - (\zeta, 0)| \le \varepsilon$ for every $\zeta \in \mathbb{C}$, $|\zeta| \le R$. So, compact subsets of the complex line $H(\mathbb{C})$ can be "approximately straightened".

The above proposition has been known for some time, for $n \ge 3$. In [4, (7.8)] this is pointed out as being (non stated but) clear in [10]. For n=2, we keep the same approach as in [10]. But we can now take advantage of the ground breaking work by Andersén and Lempert [2], as further developed in [4].

1. Proof of Proposition 1

Proposition 1 is an immediate consequence of the following two propositions:

^{(&}lt;sup>1</sup>) Partially supported by NSF grant.

⁽²⁾ Partially supported by a grant from the Ministry of Science of the Republic of Slovenia