LINEAR DIFFERENTIAL EQUATIONS WITH ALMOST PERIODIC COEFFICIENTS.

BY
ROBERT H. CAMERON. ${ }^{1}$
in Cambridge, Mass.

§ I. Introduction.

1. I. We shall deal with the system of differential equations

$$
\frac{d \xi_{1}(t)}{d t}=\alpha_{11}(t) \xi_{1}(t)+\cdots+\alpha_{1 n}(t) \xi_{n}(t)+\beta_{1}(t)
$$

(I. I I)

$$
\frac{d \xi_{n}(t)}{d t}=\alpha_{n 1}(t) \xi_{1}(t)+\cdots+\alpha_{n n}(t) \xi_{n}(t)+\beta_{n}(t)
$$

in which the functions $a_{v v}(t)$ and β_{μ} are real or complex a.p. ${ }^{2}$ functions of the real variable t, and the $\beta_{\mu}(t)$ may or may not be identically zero. We shall seek to determine conditions under which the solutions of (I. II) are of a rather general type involving a.p. functions. Before characterizing this type of solution more explicitly, we shall introduce a shorter vector terminology.
1.2. Troughout this paper we shall use the letters x, y, z, and b to denote n-dimensional vectors (or matrices of n rows and one column) having the components $\xi_{1}, \ldots, \xi_{n} ; \eta_{1}, \ldots, \eta_{n} ; \zeta_{1}, \ldots, \zeta_{n} ;$ and $\beta_{1}, \ldots, \beta_{n}$. The vector $\frac{d}{d t} \xi_{1}(t), \ldots$, $\frac{d}{d t} \xi_{n}(t)$ will be denoted by $D[x]$; the n-by- n matrix whose elements are $\alpha_{\mu \nu}$ will be denoted by A, and the matrix product of A and x will be denoted by $A . x$. Hence in this terminology (I. II) becomes

$$
\begin{equation*}
D[x(t)]=A(t) \cdot x(t)+b(t) . \tag{I.2I}
\end{equation*}
$$

We shall also define a norm for vectors, namely $\|x\|=\left|x_{1}\right|+\cdots+\left|x_{n}\right|$.

[^0]
[^0]: ${ }^{1}$ This paper was written while the author was a National Research Fellow.
 ${ }^{2}$ a.p. $=$ almost periodic (in Bohr's sense).

