LINEAR DIFFERENTIAL EQUATIONS WITH ALMOST PERIODIC COEFFICIENTS.

By

ROBERT H. CAMERON.¹ in CAMBRIDGE, MASS.

§ 1. Introduction.

I. I. We shall deal with the system of differential equations

(1.11) $\frac{d\,\xi_1(t)}{d\,t} = \alpha_{11}(t)\,\xi_1(t) + \cdots + \alpha_{1n}(t)\,\xi_n(t) + \beta_1(t)$ $\frac{d\,\xi_n(t)}{d\,t} = \alpha_{n1}(t)\,\xi_1(t) + \cdots + \alpha_{nn}(t)\,\xi_n(t) + \beta_n(t);$

in which the functions $a_{rr}(t)$ and β_{μ} are real or complex a. p.² functions of the real variable t, and the $\beta_{\mu}(t)$ may or may not be identically zero. We shall seek to determine conditions under which the solutions of (1.11) are of a rather general type involving a. p. functions. Before characterizing this type of solution more explicitly, we shall introduce a shorter vector terminology.

1.2. Troughout this paper we shall use the letters x, y, z, and b to denote *n*-dimensional vectors (or matrices of *n* rows and one column) having the components $\xi_1, \ldots, \xi_n; \eta_1, \ldots, \eta_n; \zeta_1, \ldots, \zeta_n$; and β_1, \ldots, β_n . The vector $\frac{d}{dt}\xi_1(t), \ldots, \frac{d}{dt}\xi_n(t)$ will be denoted by D[x]; the *n*-by-*n* matrix whose elements are $\alpha_{\mu\nu}$ will be denoted by A, and the matrix product of A and x will be denoted by $A \cdot x$. Hence in this terminology (1.11) becomes

$$(1. 21) D[x(t)] = A(t) \cdot x(t) + b(t).$$

We shall also define a norm for vectors, namely $||x|| = |x_1| + \cdots + |x_n|$.

¹ This paper was written while the author was a National Research Fellow.

² a. p. = almost periodic (in Bohr's sense).