COMMUTATORS, PERTURBATIONS, AND UNITARY SPECTRA

BY

C. R. PUTNAM
Purdue University, Lafayette, U.S.A. (*)

1. Introduction. Let 4 and B denote linear operators, bounded or unbounded, on
a Hilbert space H of elements . As is customary, let ||z]| = (2, z)* and put || 4| = sup|| 4 ||,
where x| =1. If 4 and B are bounded and if C' denotes the commutator of 4 and B,

C=AB—- BA, (1.1)
then it is well known that
el <24 8| (1.2)

and that the inequality cannot be improved by replacing the 2 by 2 — & with ¢ > 0. Indeed,
simple examples with finite matrices 4 =0, B =0 and 4, i B (hence also C) even self-
adjoint show that the equality of (1.2) may hold.

Part I of this paper will be concerned with an improvement of (1.2) when B is bounded
but otherwise arbitrary, 4 and C are bounded and self-adjoint, and C is non-negative. If
the space H is finite-dimensional this last restriction forces C' to be 0, since the trace of
C, which equals the sum of its eigenvalues, is 0. On the other hand, in the infinite dimen-
sional case, examples show that both conditions €' =0, C +0 are compatible; see, e.g.,
[20], [23]. The principal result of Part I will be an inequality corresponding to (1.2) but
where || 4|| is replaced by (}) meas sp(A4), where sp(4) denotes the spectrum of 4.

In Part IT there will be considered a related problem concerning perturbations of a
self-adjoint operator 4. It will be supposed first (Theorem 2) that A and B are unitarily

equivalent bounded self-adjoint operators whose difference D is semi-definite, so that

D=A—-B>0(or<0)and B=UAU* (U unitary). (1.3)
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