QUADRATIC POLYNOMIALS AND QUADRATIC FORMS

BY
JOHN FRIEDLANDER and HENRYK IWANIEC
Scuola Normale Superiore, Pisa

1. Introduction

Let $g(n)=a n^{2}+b n+c$ be a polynomial with integral coefficients ($a>0$) and discriminant $D=b^{2}-4 a c<-4$. We shall be concerned with the problem of showing that, for φ a binary quadratic form satisfying certain natural conditions, the number of $n \leqslant X$ for which $g(n)$ is represented by φ has the expected order of magnitude. The method involves an injection into the half dimensional sieve of a combination of ideas due largely to Chen [1] and Hooley [3]. A sketch of the proof is given in section 2.

For m an integer let $\varrho(m)$ denote the number of solutions of the congruence

$$
g(n) \equiv 0(\bmod m) .
$$

Let P denote a set of primes satisfying:

$$
\begin{equation*}
0 \leqslant \varrho(p)<p, \tag{1.1}
\end{equation*}
$$

For some fixed K, and all $z \geqslant 2$,

$$
\begin{equation*}
\left|\sum_{\substack{p \leqslant z \\ p \in P}} \frac{\varrho(p)}{p-\varrho(p)} \log p-\frac{1}{2} \log z\right| \leqslant K \tag{1.2}
\end{equation*}
$$

For $z \geqslant 2$, we let $P(z)=\prod_{\substack{p<z \\ p \in P}} p, \mathcal{A}=\{g(n) \mid n \leqslant X\}$ and

$$
S(\mathcal{A}, P, z)=\sum_{\substack{m \in A \\(m, P(2))=1}} 1
$$

Theorem 1. There exists a positive δ, depending on a, b, c and K such that

$$
\begin{equation*}
S(\mathcal{A}, P, z)>\delta X \prod_{\substack{p<\mathcal{P} \\ p \in P}}\left(1-\frac{\varrho(p)}{p}\right)-6 \pi(z) . \tag{1.3}
\end{equation*}
$$

