THE GEOMETRY OF A NET OF QUADRICS IN FOUR-DIMENSIONAL SPACE.

By
W. L. EDGE
of Eidinburgh.

Among the reasons why the study of the geometry of a net of quadrics in four-dimensional space should prove interesting and attractive there are two which immediately present themselves even before this study is commenced; they are, first, that the base curve of the net, through which all the quadrics pass, is a canonical curve and, second, that the Jacobian curve of the net the locus of the vertices of the cones belonging to it - is birationally equivalent to a plane quintic.

In space of any number $n(>2)$ of dimensions a net of quadrics has a base locus, of order eight, and a Jacobian curve; these must both figure prominently in any account of the geometry of the net of quadrics. The polar primes ${ }^{1}$ of any point in regard to the quadrics of the net have in common an $[n-3]$ except when the point lies on the Jacobian curve, when they have in common an $[n-2]$; there is thus a singly-infinite family of $[n-2]^{\prime}$'s in (I, r) correspondence with the points of the Jacobian curve, and it is found that each $[n-2]$ has $\frac{1}{2} n(n-1)$ intersections with the Jacobian curve. ${ }^{2}$ This is analogous to the well-known result in [3] that, when a point lies on the twisted sextic which is the locus of vertices of cones belonging to a net of quadric surfaces, the polar planes of the point in regard to the quadrics all pass through a trisecant of the sextic. The

[^0]
[^0]: ${ }^{1}$ When we are concerned with geometry in a linear space $[n]$ of n dimensions the word prime is used to denote a linear space of $n-1$ dimensions; the word primal is used to denote any locus, other than a linear space, of $n-1$ dimensions. In [4] we also use the term solid to denote a three-dimensional space.
 ${ }^{2}$ Cf. Edge: Proc. Edinburgh Malh. Soc. (2), 3 (1933), 259-268.
 24-34472. Acta mathematica. 64. Imprimé le l novembre 1934.

