A CLASS OF SPECIAL \mathcal{L}_{∞} SPACES

BY

J. BOURGAIN and F. DELBAEN

Vrije Universiteit Brussel, Belgium

1. Introduction

We shall construct Banach spaces X and Y having some peculiar properties.

(a) X is a separable \mathcal{L}_{∞} space.

(b) X is a Radon-Nikodym space. Since a separable \mathcal{L}_{∞} space cannot be imbedded isomorphically into a separable dual space, this example solves negatively the following conjecture of Uhl: Is every separable Radon-Nikodym space isomorphic to a subspace of a separable dual space?

(c) X is a Schur space, i.e. weak and norm compactness coincide in X. This answers negatively a conjecture of Lindenstrauss who asked in [10] whether a space which has the weakly compact extension property is necessarily finite dimensional (see also Theorem 2.4). In [11] Pełczynski and Lindenstrauss and in [12] Lindenstrauss and Rosenthal asked whether every \mathcal{L}_{∞} space contains a subspace isomorphic to c_0 . Our example disproves this conjecture.

(d) X is weakly sequentially complete. Since X^* is a \mathcal{L}_1 space, X^* is also weakly sequentially complete. For a long time it was conjectured that a Banach space is reflexive if and only if both X and X^* are weakly sequentially complete.

(a') The Banach space Y is a separable \mathcal{L}_{∞} space.

(b') The Banach space Y is a Radon-Nikodym space.

(c') Y is somewhat reflexive, i.e. every infinite dimensional subspace of Y contains an infinite dimensional subspace which is reflexive.

Since Y does not contain a subspace isomorphic to l_1 it follows from results of Lewis and Stegall [9] that Y* is isomorphic to l_1 . It is strange that Y does not contain a copy of c_0 . Since Y is a \mathcal{L}_{∞} space it also has the Dunford-Pettis property and hence there are

^{11 - 802905} Acta mathematica 145. Imprimé le 6 Février 1981