THEORY OF LINEAR DIFFERENTIAL EQUATIONS CONTAINING A PARAMETER.

By

W. J. TRJITZINSKY

of URBANA, ILL., U.S.A.

Index.

- 1. Introduction.
- 2. Some Preliminary Facts.
- 3. Formal Integration.
- 4. Analytic Integration.
- 5. Iterations.
- 6. The Fundamental Existence Theorem.
- 7. Non-homogeneous Equations.
- 8. Integro-differential Equations.
- 9. Concerning Boundary Value Problems.

I. Introduction. Our present object is to establish the asymptotic properties of the solutions of a linear differential equation of order n

(A₁)
$$L_n(x,\lambda;y) \equiv \sum_{k=0}^n a_{n-k}(x,\lambda) y^{(k)} = 0$$
$$[{}_1a_0(x,\lambda) \neq 0; \quad {}_1a_n(x,\lambda) \neq 0]^1,$$

in so far as the parameter λ is concerned. The theory will be given for the complex plane of λ ; moreover, no restrictions will be made concerning the λ -formal series solutions of (Λ_1) . The coefficients in (Λ_1) will be assumed to be indefinitely

¹ $f^{(k)}(k \ge 0)$ here and in the sequel denotes $\frac{\partial^k f}{\partial x^k}$.

^{1-36122.} Acta mathematica. 67. Imprimé le 19 mars 1936.