PROBLÈMES DANS LA THÉORIE DES SYSTÈMES DYNAMIQUES

PAR

W. J TRJITZINSKY

à Urbana, Ill., E. U. A.

Table des matières

						rage
1.	Introduction					191
2.	Généralisations de la stabilité de Poisson					195
3.	Généralisations de la stabilité de Poisson (suite)				. :	20 0
	Stabilité d'ensemble-trajectoires					
5.	Stabilité d'ensemble-trajectoires (suite)					214
	Stabilité sur des ensembles partout denses et sur des résiduels					
7.	Stabilité sur des ensembles partout denses et sur des résiduels (suite)					231
8.	Stabilité de Liapounoff					240
9.	Pénétration dans tel ensemble donné d'avance					24 4
10.	Pénétration dans tel ensemble donné d'avance (suite)					249
	Les récurrences (I*), la stabilité-GP et le centre (I*) de mouvements					
12.	Considérations aléatoires et centre (I+) d'attraction					271
13.	Le théorème ergodique dans une hypothèse de Denjoy					278

1. Introduction

Nous développons dans l'ouvrage actuel quelques problèmes dans la théorie des systèmes dynamiques; dans la majeure partie notre point de vue est topologique. Pourtant dans la section 13 nous présentons, dans des hypothèses métriques, certains résultats ergodiques, sans supposition de l'existence d'une mesure invariante.

Nous tirons parti des méthodes topologiques, que M. Denjoy avait introduites, avec tant de succès, dans l'analyse mathématique; nous renvoyons à son livre (D) [1].

Nous supposons que l'espace D de mouvement est situé dans l'espace euclidien U_r (à r dimensions). On considère un groupe continu de transformations F(M, t) (= M'), M, M' représentant des points dans D et t étant un paramètre continu, $-\infty < t < +\infty$:

$$F(M, 0) = M, \quad F(F(M, \tau), t) = F(M, t + \tau);$$

ou bien on considère un groupe discret de transformations

$$F(M, n) = M^{[n]}$$
 (n entier).