ON THE DIFFERENTIAL EQUATIONS OF HILL IN THE THEORY OF THE MOTION OF THE MOON (II)

BY

J. F. STEFFENSEN

in Copenhagen

1. In a former paper with the same title ${ }^{1}$ (quoted below as "I") polar coordinates r and l were employed to represent the orbit, and power series in $x \equiv \cos 2 l$ were used for satisfying the differential equations. In the present paper the time t will be employed as independent variable, and the expansions will be in powers of t or some simple function of t.

We put in I (4)
so that

$$
\begin{equation*}
\cos 2 l=x, \quad \sin 2 l=y, \quad \varepsilon=\xi+\frac{1}{2} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d x}{d l}=-2 y, \quad \frac{d y}{d l}=2 x, \quad x^{2}+y^{2}=1 \tag{2}
\end{equation*}
$$

and find, taking I (3) into account, the following system of equations ${ }^{2}$

$$
\begin{align*}
& \frac{d \varrho}{d t}=\omega^{2}-\varrho^{2}-\xi+\frac{3}{2} x \tag{3}\\
& \frac{d \omega}{d t}=-2 \varrho \omega-\frac{3}{2} y \tag{4}\\
& \frac{d \xi}{d t}=-3 \varrho \xi-\frac{3}{2} \varrho \tag{5}\\
& \frac{d x}{d t}=-2 y \omega+2 y \tag{6}\\
& \frac{d y}{d t}=2 x \omega-2 x . \tag{7}
\end{align*}
$$

[^0]${ }^{2}$ The possibility of reducing to this form was, in principle, already indicated in my thesis Analytiske Studier med Anvendelser paa Taltheorien, Copenhagen 1912, p. 146-147.

[^0]: ${ }^{1}$ Acta mathematica, 93 (1955), 169-177.

