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§ 0. Introduction

In this paper, we will study parabolic equations of the type

(A-—q(x, t)——%) u(x, ) =0 ©.1)

on a general Riemannian manifold. The function g(x, 7) is assumed to be C? in the first
variable and C! in the second variable. In classical situations [20], a Harnack inequality
for positive solutions was established locally. However, the geometric dependency of
the estimates is complicated and sometimes unclear. Our goal is to prove a Harnack
inequality for positive. solutions of (0.1) (§2) by utilizing a gradient estimate derived in
§ 1. The method of proof is originated in [26] and [8], where they have studied the
elliptic case, i.¢. the solution is time independent. In some situations (Theorems 2.2 and
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