ON LATTICE POINTS IN A CONVEX DECAGON.

By

WALTER LEDERMANN and KURT MAHLER of MANCHESTER.

Let K be a convex domain in the (x, y)-plane symmetrical in the origin O = (0, 0) of the coordinate system. If

$$X_1 = (x_1, y_1)$$
 and $X_2 = (x_2, y_2)$

are two points not collinear with O, then the set Λ of all points¹

$$u_1 X_1 + u_2 X_2$$
 $(u_1, u_2 = 0, \mp 1, \mp 2, ...)$

is a lattice, and the positive number

$$d(\boldsymbol{\Lambda}) = |(X_1, X_2)|$$

is the determinant of Λ . We say that Λ is *K*-admissible if no point of Λ except O is an *inner* point of K. Then the lower bound

$$\varDelta(K) = 1. b. d(\varDelta)$$

extended over all K-admissible lattices is a positive number and is called the minimum determinant of K. There exist critical lattices of K, i.e. lattices Λ which are K-admissible and of determinant

$$d(\boldsymbol{\Lambda}) = \boldsymbol{\Lambda}(\boldsymbol{K}).$$

Except when K is a parallelogram, such lattices have just three pairs of points $\mp A$, $\mp B$, $\mp C$ on the boundary of K, and if the notation is chosen suitably, then

$$A + B = C.$$

¹ We use vector notation; thus $u_1 X_1 + u_2 X_2 = (u_1 x_1 + u_2 x_2, u_1 y_1 + u_2 y_2)$, and in particular $-X_1 = (-x_1, -y_1)$. The determinant of X_1 and X_2 is denoted by $(X_1, X_2) = x_1 y_2 - x_2 y_1$.