ON LATTICE POINTS IN A CONVEX DECAGON.

By
WALTER LEDERMANN and KURT MAHLER of Manchester.

Let K be a convex domain in the (x, y)-plane symmetrical in the origin $O=(\mathrm{o}, \mathrm{o})$ of the coordinate system. If

$$
X_{1}=\left(x_{1}, y_{1}\right) \text { and } X_{2}=\left(x_{2}, y_{2}\right)
$$

are two points not collinear with O, then the set A of all points ${ }^{1}$

$$
u_{1} X_{1}+u_{2} X_{2} \quad\left(u_{1}, u_{2}=0, \mp \mathrm{r}, \mp 2, \ldots\right)
$$

is a lattice, and the positive number

$$
d(\Lambda)=\left|\left(X_{1}, X_{2}\right)\right|
$$

is the determinant of A. We say that Λ is K-admissible if no point of Λ except O is an inner point of K. Then the lower bound

$$
\Delta(K)=1 . \mathrm{b} . d(\Lambda)
$$

extended over all K-admissible lattices is a positive number and is called the minimum determinant of K. There exist critical lattices of K, i. e. lattices A which are K-admissible and of determinant

$$
d(\Lambda)=\Delta(K)
$$

Except when K is a parallelogram, such lattices have just three pairs of points $\mp A, \mp B, \mp C$ on the boundary of K, and if the notation is chosen suitably, then

$$
A+B=C
$$

[^0]
[^0]: ${ }^{1}$ We use vector notation; thus $u_{1} X_{1}+u_{2} X_{2}=\left(u_{1} x_{1}+u_{2} x_{2}, u_{1} y_{1}+u_{2} y_{2}\right)$, and in particular $-X_{1}=\left(-x_{1},-y_{1}\right)$. The determinant of X_{1} and X_{2} is denoted by $\left(X_{1}, X_{2}\right)=x_{1} y_{2}-x_{2} y_{1}$.

