A GENERAL PRIME NUMBER THEOREM.

By
BERTIL NYMAN of Uppsala.

Consider a monotone sequence of real positive numbers
(1)

$$
1<y_{1}<y_{2}<\cdots<y_{n}<\cdots
$$

Form all possible products

$$
\begin{equation*}
x=y_{n_{1}} y_{n_{\mathrm{a}}} \ldots y_{n_{k}}, \quad n_{1} \leq n_{2} \leq \cdots \leq n_{k} \tag{2}
\end{equation*}
$$

and arrange them in a non-decreasing sequence

$$
\begin{equation*}
\mathrm{I}<x_{1} \leq x_{2} \leq \cdots \leq x_{n} \leq \cdots \tag{3}
\end{equation*}
$$

where every x appears as many times as it can be represented by formula (2). The numbers $\left\{y_{n}\right\}$ are called the primes of the sequence $\left\{x_{n}\right\}$. Let $\pi(x)$ denote the number of primes $\leq x$, and $N(x)$ the number of $x_{n} \leq x$.

This definition of generalized prime numbers is given by Beurling, who under certain general conditions has derived very interesting relations between the functions $N(x)$ and $\pi(x) .{ }^{1}$

In what follows, $\zeta(s)$ denotes the function
(4)

$$
\zeta(s)=\mathrm{I}+x_{1}^{-s}+x_{2}^{-s}+\cdots=\int_{0}^{\infty} x^{-\varepsilon} d N(x) . \quad s=\sigma+i t
$$

(For the sake of simplicity, we assume that $N(x)$ has a step equal to I at the point $x=\mathrm{I}$.) $\mathrm{Li}(x)$ denotes the logarithmic integral, i. e. the principal value of the integral

$$
\int_{0}^{x} \frac{d y}{\log y}
$$

[^0]
[^0]: ${ }^{1}$ A. Beubling, Analyse de la loi asymptotique de la distribntion des nombres premiers généralisés, Acta mathematica, vol. 68.

