SOME THEOREMS ON ALGEBRAIC RINGS.

By

in Budapest.

In his paper "Sätze über algebraische Ringe" 1 T. Nagell has discussed certain properties of algebraic rings. The present note concerns itself with the generalization of these results to relative algebraic rings; the theorems will be transferred without essential change.

In what follows we shall mean by F a finite algebraic number field and by R the ring of the integral elements of F. Let further ϕ be an algebraic field over F of degree n and let P be the ring of the integral elements of ϕ . It is well known that in ϕ there are n elements $\alpha_1, \ldots, \alpha_n$, being linearly independent with respect to F, such that every element of ϕ possesses a unique representation of the form

$$\omega = a_1 \omega_1 + \dots + a_n \omega_n \tag{1}$$

with coefficients in F. The ω_i are called the basis of ϕ with respect to F. Let ξ be an element of P of the exact degree n, that is, ξ is a root of an *irreducible* algebraic equation $x^n + r_1 x^{n-1} + \cdots + r_n = 0$ where r_i are in R. In view of (1) we may set

$$\xi^k = c_{k1}\omega_1 + \cdots + c_{kn}\omega_n, \qquad (c_{ki}\varepsilon F)$$
 (2)

for k = 0, 1, ..., n - 1. Since ξ was chosen so as to be of the exact degree n, the determinant $c = |c_{ki}|$ of the coefficients in (2) does not vanish, and so the system may be inverted, and then we get

$$\omega_{i} = \frac{1}{c} (b_{i1} + b_{i2} \xi + \dots + b_{in} \xi^{n-1}), \qquad (b_{ik} \varepsilon F)$$
(3)

for $i = 1, 2, \ldots, n$.

¹ Math. Zeitschrift 34 (1932), pp. 179-182.

² The elements of F will be denoted by Latin, those of ϕ by Greek letters.