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In his paper “Sitze iiber algebraische Ringe’! T. Nagell has discussed
certain properties of algebraic rings. The present note concerns itself with the
generalization of these results to relative algebraic rings; the theorems will be
transferred without essential change.

In what follows we shall mean by F' a finite algebraic number field and by
R the ring of the integral elements of F. Let further ¢ be an algebraic field
over F of degree » and let P be the ring of the integral elements of ¢. It is
well known that in ¢ there are » elements®, w,, . . ., w., being linearly independent
with respec:t to F, such that every element of ¢ possesses a unique representa-
tion of the form

' w=aw + -+ anw, (1)
with coefficients in F. The w; are called the basis of ¢ with respect to F. Let
§ be an element of P of the exact degree », that is, & is a root of an ¢rreducible
algebraic equation z* + 7, 2"' + - + 1, =0 where 7; are in R. In view of (1)
we may set

’“=ck1w1 + -+ Crpwp, (ck,-eF) (2)

for k=o0,1,..., n— 1. Since § was chosen so as to be of the exact degree =,
the determinant c¢=]c;| of the coefficients in (2) does not vanish, and so the
system may be inverted, and then we get

1
w; =E (bn + bigE 4+ + bin g"—l), (b,-ke F) (3)

fori=1,2,...,n.

! Math. Zeitschrift 34 (1932), pp. 179—182.
* The elements of F' will be denoted by Latin, those of ¢ by Greek letters.
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