ON TWO PROBLEMS CONCERNING LINEAR TRANSFORMATIONS IN HILBERT SPACE. By ## ARNE BEURLING of UPPSALA. ## Introduction. 1. Let H be a Hilbert space and T and T^* two adjoined transformations, both determined throughout H. Let \mathcal{O}_{λ} be the set of eigenelements of T, corresponding to λ , i. e. the solutions $\varphi \neq 0$ of the equation $T\varphi = \lambda \varphi$; and Φ the sum of all Φ_{λ} . Firstly we assume that (A) the set $$\Phi$$ is fundamental on H . We shall denote by C_f and C_g^* the closed linear manifolds spanned by $\{T^n f\}_0^\infty$ and $\{T^{*n} g\}_0^\infty$, respectively; f, g being elements in H. This study is devoted to two general problems concerning the transformations T and T^* which we shall call the extinction problem and the closure problem. We shall say that T has an extinction theorem if, for every $f \neq 0$, it is true that the manifold C_f contains at least one eigenelement $\varphi \neq 0$. In the case $$f = \sum_{\nu=0}^{n} c_{\nu} \varphi_{\nu}, \quad \varphi_{\nu} \in \boldsymbol{\mathcal{O}}_{\lambda_{\nu}},$$ where $\lambda_{\nu} \neq \lambda_{\mu}$ for $\nu \neq \mu$, it is obvious that all φ_{ν} belong to C_f . By (A), every f may certainly be approximated arbitrarily closely by linear combinations of eigenelements; but this does by no means imply that the extinction theorem is a consequence of (A). By the closure problem we mean the characterizing of the elements g, for which $C_g^* = H$, by the behaviour of the scalar product (φ, g) , when φ runs through Φ . From the relations $$(\varphi_{\lambda}, T^{*n}g) = (T^n \varphi_{\lambda}, g) = \lambda^n (\varphi_{\lambda}, g), \quad n \ge 0,$$