ON THE SPECTRAL SYNTHESIS OF BOUNDED FUNCTIONS.

By

ARNE BEURLING

of UPPSALA.

1. Introduction.

In this paper L^1 , L^2 and L^{∞} will denote the linear metric spaces formed by the measurable functions over $-\infty < x < \infty$ which are respectively summable, of summable square or equivalent to a bounded function. The corresponding norms will be denoted by $\|\varphi\|_1$, $\|\varphi\|_2$ and $\|\varphi\|_{\infty}$.

To each $\varphi(x) \in L^{\infty}$ corresponds a closed set \mathcal{A}_{φ} of real numbers, termed the spectral set of φ , which is formed, briefly, by those λ for which the pure oscillation $e^{i\lambda x}$ is contained in the manifold spanned by the set

(1.1)
$$\varphi(x+\tau)$$
 $(-\infty < \tau < \infty)$

in the weak topology of bounded functions, i. e. for every $G(x) \in L^1$ the condition

$$\int_{-\infty}^{\infty} \varphi(x+\tau) G(x) dx = 0 \qquad (-\infty < \tau < \infty)$$
$$\int_{-\infty}^{\infty} e^{i\lambda x} G(x) dx = 0.$$

implies¹

The main problem of spectral Synthesis of L^{∞} is to decide whether each $\varphi(x) \in L^{\infty}$ is contained in the weak closure of the manifold spanned by the oscillations

$$(1.2) e^{i\lambda x} (\lambda \in \mathcal{A}_{\varphi}).$$

¹ As is easily proved this definition leads to the same Λ_{φ} as that obtained by the stronger topology used by the author in a previous paper; Un Théorème sur les fonctions bornées ..., Acta math. vol. 77, 1945.

^{29-48173.} Acta mathematica. 81. Imprimé le 27 avril 1949.