ON FUNCTIONS ORTHOGONAL TO INVARIANT SUBSPACES

BY
P. R. AHERN and D. N. CLARK
University of Wisconsin, Madison, Wis. (1) and University of California, Los Angeles, Calif. ()

Let H^{2} denote the usual Hardy class of functions holomorphic in the unit disk, U. Let M denote a closed, invariant subspace of H^{2}. The theory of such subspaces is well-known and may be found, for example, in the first three chapters of Hoffman's book [6]; every such M has the form $M=\varphi H^{2}$, where $\varphi \in H^{2}$ is an inner function, $\varphi=B s \Delta$ with

$$
\begin{gathered}
B(z)=\prod_{v=1}^{\infty}\left(-\frac{\bar{a}_{\nu}}{\left|a_{\nu}\right|}\right) \frac{z-a_{\nu}}{1-\bar{a}_{\nu} z}, \quad s(z)=\exp \left\{-\int_{0}^{2 \pi} \frac{e^{i \theta}+z}{e^{i \theta}-z} d \sigma(\theta)\right\} \\
\Delta(z)=\exp \left\{-\sum_{\nu=1}^{\infty} r_{\nu} \frac{e^{i \theta_{\nu}}+z}{e^{i \theta_{\nu}}-z}\right\}
\end{gathered}
$$

where $\left\{a_{\nu}\right\}$ is a Blaschke sequence $\left(\Sigma\left(1-\left|a_{\nu}\right|\right)<\infty\right)\left(\bar{a}_{\nu}| | a_{\nu} \mid \equiv 1\right.$ is understood whenever $a_{\nu}=0$), σ is a finite, positive, continuous, singular measure, and $r_{\nu} \geqslant 0, \Sigma r_{\nu}<\infty$.

In this paper we study the subspace $M^{\perp}=H^{2} \Theta M$. Our results may be summarized as follows: we obtain a unitary operator V which maps the sum of three L^{2} spaces onto M^{\perp}. The first, corresponding to the factor B of φ, is the space $L^{2}\left(d \sigma_{B}\right)$, where σ_{B} is the measure on the positive integers that assigns a mass $1-\left|a_{k}\right|$ to the integer k. The second L^{2} space is $L^{2}(d \sigma)$, and the third is the sum of the L^{2} spaces of Lebesgue measure on the real intervals of length r_{j}.

In the special case $\varphi=B$, the functions $h_{n}(z)=\left(1-\left|a_{n}\right|^{2}\right)^{\frac{1}{2}} B_{n}(z) /\left(1-\bar{a}_{n} z\right)\left(B_{n}\right.$ the Blaschke product with zeros a_{1}, \ldots, a_{n-1}) form an orthonormal basis of M^{\perp}; cf. [10, p. 305], [1]. From this fact it follows easily that the map

$$
\begin{equation*}
V\left(\left\{c_{n}\right\}\right)(z)=\sum_{n=1}^{\infty} c_{n}\left(1+\left|a_{n}\right|\right)^{\frac{1}{2}} B_{n}(z)\left(1-\bar{a}_{n} z\right)^{-1}\left(1-\left|a_{n}\right|\right) \tag{0.1}
\end{equation*}
$$

carries $L^{2}\left(d \sigma_{B}\right)$ isometrically onto M^{\perp}, and this represents one instance of our theorem.
${ }^{(1)}$ The first author's contribution was partially supported by N.S.F. Grant GP-6764.
${ }^{(2)}$ The second author's contribution was partially supported by N.S.F. Grant GP-9658.
13-702901. Acta mathematica. 124. Imprimé le 28 Mai 1970.

