ON FUNCTIONS ORTHOGONAL TO INVARIANT SUBSPACES

BY

P. R. AHERN and D. N. CLARK

University of Wisconsin, Madison, Wis. (1) and University of California, Los Angeles, Calif. (2)

Let H^2 denote the usual Hardy class of functions holomorphic in the unit disk, U. Let M denote a closed, invariant subspace of H^2 . The theory of such subspaces is well-known and may be found, for example, in the first three chapters of Hoffman's book [6]; every such M has the form $M = \varphi H^2$, where $\varphi \in H^2$ is an *inner* function, $\varphi = Bs\Delta$ with

$$B(z) = \prod_{\nu=1}^{\infty} \left(-\frac{\tilde{a}_{\nu}}{|a_{\nu}|} \right) \frac{z - a_{\nu}}{1 - \bar{a}_{\nu} z}, \quad s(z) = \exp\left\{ -\int_{0}^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} \, d\sigma(\theta) \right\}$$
$$\Delta(z) = \exp\left\{ -\sum_{\nu=1}^{\infty} r_{\nu} \frac{e^{i\theta_{\nu}} + z}{e^{i\theta_{\nu}} - z} \right\}$$

where $\{a_{\nu}\}\$ is a Blaschke sequence $(\Sigma(1-|a_{\nu}|)<\infty)$ $(\bar{a}_{\nu}/|a_{\nu}|\equiv 1$ is understood whenever $a_{\nu}=0$, σ is a finite, positive, continuous, singular measure, and $r_{\nu} \ge 0$, $\Sigma r_{\nu} < \infty$.

In this paper we study the subspace $M^{\perp} = H^2 \odot M$. Our results may be summarized as follows: we obtain a unitary operator V which maps the sum of three L^2 spaces onto M^{\perp} . The first, corresponding to the factor B of φ , is the space $L^2(d\sigma_B)$, where σ_B is the measure on the positive integers that assigns a mass $1 - |a_k|$ to the integer k. The second L^2 space is $L^2(d\sigma)$, and the third is the sum of the L^2 spaces of Lebesgue measure on the real intervals of length r_j .

In the special case $\varphi = B$, the functions $h_n(z) = (1 - |a_n|^2)^{\frac{1}{2}} B_n(z)/(1 - \bar{a}_n z)$ (B_n the Blaschke product with zeros a_1, \ldots, a_{n-1}) form an orthonormal basis of M^{\perp} ; cf. [10, p. 305], [1]. From this fact it follows easily that the map

$$V(\{c_n\})(z) = \sum_{n=1}^{\infty} c_n (1 + |a_n|)^{\frac{1}{2}} B_n(z) (1 - \bar{a}_n z)^{-1} (1 - |a_n|)$$
(0.1)

carries $L^2(d\sigma_B)$ isometrically onto M^{\perp} , and this represents one instance of our theorem.

⁽¹⁾ The first author's contribution was partially supported by N.S.F. Grant GP-6764.

⁽²⁾ The second author's contribution was partially supported by N.S.F. Grant GP-9658.

^{13-702901.} Acta mathematica. 124. Imprimé le 28 Mai 1970.