CONCENTRATED AND RARIFIED SETS OF POINTS.

Вч

A. S. BESICOVITCH

Trinity College, CAMBRIDGE.

CHAPTER I.

Concentrated Sets.

I have arrived at the definition of concentrated sets from the following two similar problems:

Problem I. What are the linear sets whose measure with respect to any continuous monotone function $\varphi(l)$ is zero?

Problem II. What are the linear sets on which the variation of any continuous monotone function is zero?

Concentrated sets are defined as follows:

A non-enumerable set of points E is said to be concentrated in the neighbourhood of an enumerable set H if any open set containing the set H contains also the set E with the exception of at most an enumerable set of points.

§ 1. Measure with respect to a function. Let $\varphi(l)$ be a positive increasing function satisfying defined for l > 0 and such that $\varphi(+0) = 0$ and let E be a linear set of points. Denote by $I = \Sigma l_i$ any sequence of intervals containing the whole of the set $E(l_i$ denoting both an interval and its length). Denote by $m_{\varphi}^{\lambda} E$ the lower bound of the sum

 $\sum \varphi(l_i)$

37-33617. Acta mathematica. 62. Imprimé le 12 février 1934.