AN ISOPERIMETRIC INEQUALITY FOR CLOSED CURVES CONVEX IN EVEN-DIMENSIONAL EUCLIDEAN SPACES*

BY

I. J. SCHOENBERG

in Philadelphia, Pa.

Introduction

1. The main theorem. A closed convex curve in the plane E_2 is usually defined as the boundary of a compact convex set.¹ Alternatively, if the curve is given in parametric form we could say that the curve is *convex* provided it never crosses a straight line more than twice. The second definition has the advantage of extending in a natural way to closed curves in an even-dimensional space E_{2n} as follows:

Let

(1)
$$C: x_i = x_i(t), (i = 1, ..., 2n; 0 \le t \le 2\pi),$$

where $x_l(t)$ are continuous functions of period 2π , be a closed curve in E_{2n} . We shall say that C is convex in E_{2n} provided that it never crosses a hyperplane more than 2n times. If C is convex in E_{2n} and spans the space E_{2n} , i.e. is not contained in a lower-dimensional flat space, then we shall say that C is convex on E_{2n} . It will be shown below (Article 5) that curves convex in E_{2n} are rectifiable. As an example of a curve convex on E_{2n} we mention the curve

(2)
$$C_0: \quad x_1 = \cos t, \ x_3 = \frac{1}{2} \cos 2t, \dots, \ x_{2n-1} = \frac{1}{n} \cos nt,$$

$$x_2 = \sin t, \ x_4 = \frac{1}{2} \sin 2t, \dots, \ x_{2n} = \frac{1}{n} \sin nt, \quad (0 \le t \le 2\pi).$$

Indeed, C_0 is convex in E_{2n} , for if $l(x_1, ..., x_{2n})$ is any linear function and if we substitute the x_i as defined by (2), we find that $l = T_n(t)$ is a real trigonometric

^{*} This work was performed on a National Bureau of Standards contract with the University of California, Los Angeles, and was sponsored (in part) by the Office of Scientific Research, USAF.

¹ See [1], page 3, in the list of references at the end of this paper.

^{10 - 533807.} Acta mathematica. 91. Imprimé le 27 octobre 1954.