ON INDEFINITE BINARY QUADRATIC FORMS

BY

A. OPPENHEIM

University of Malaya, Singapore, Malaya

1. If

$$
\begin{equation*}
Q(x, y)=a x^{2}+b x y+c y^{2}=[a, b, c] \tag{1}
\end{equation*}
$$

is an indefinite binary quadratic form with real coefficients in integral variables x, y, not both zero, it is well known that M, the lower bound of $|Q(x, y)|$ (usually called the minimum) satisfies the inequality

$$
\begin{equation*}
M \leq D / 5^{\frac{t}{2}} \tag{2}
\end{equation*}
$$

where D^{2} is the discriminant of Q,

$$
\begin{equation*}
D^{2}=b^{2}-4 a c>0, \quad D>0 . \tag{3}
\end{equation*}
$$

If equality holds in (2) then Q must be equivalent to a multiple of the form [1, 1, - 1].

This is part of a famous theorem due to Markoff [4], a considerably simplified proof of which has lately been given by Cassels [2].

Put briefly, Markoff's theorem states that

$$
\begin{equation*}
\overline{\lim } M / D=\frac{1}{3} \tag{4}
\end{equation*}
$$

if we consider all classes of forms with discriminant D^{2}, and that any form Q with $3 M(Q)>D$ is equivalent to a multiple of one of a denumerable set of forms, the Markoff forms, of which the first is $[1,1,-1]$, the second [1, 2, -1], the third [5, 11, -5].

Recently Barnes [1] has discussed the problem of obtaining corresponding bounds for the product

$$
\begin{equation*}
Q(x, y) Q(u, v) \tag{5}
\end{equation*}
$$

over integers x, y, u, v such that

