CURVE FAMILIES F^{*} LOCALLY THE LEVEL CURVES OF A PSEUDOHARMONIC FUNCTION

BY

JAMES JENKINS and MARSTON MORSE
Johns Hopkins
University
Institute for Advanced Study

Introduction

The family F^{*} may be defined over an arbitrary open Riemann surface Q. When Q is not simply connected there may exist no single-valued $P H$ [pseudoharmonic] function on Q with F^{*} as its family of level lines. On the universal covering surface M of Q there do exist $P H$ functions u, single-valued on M and with a family F_{M}^{*} of level lines which projects into F^{*} on Q. While u may not be single-valued on Q it may behave like an integral in that it has branches which differ by a constant, or it may have a real logarithm which has this property. In studying such behavior of u one may focus on the branches of u obtained by continuation of u along a single closed curve k not homotopic to zero on Q.

In this way one is led to the essentially typical case of a family F^{*} defined on a sphere Σ^{*} with a north pole N and south pole S removed. Although there may be no single-valued PH function u on Σ^{*} with F^{*} as its family of level lines there will in general be multiplevalued functions u satisfying linear relations

$$
\begin{equation*}
u\left[p^{(1)}\right]=a u(p)+b \quad(a \neq 0) \tag{1.0}
\end{equation*}
$$

where p and $p^{(1)}$ are points on the universal covering surface M of Σ^{*}, and where p and $p^{(1)}$ in M project into the same point in Σ^{*}, but on M have longitudes θ and $\theta+2 \pi$ respectively. However the values of the constants a and b for which a relation (1.0) may hold depend in a deep way upon the nature of the family F^{*}. See MJ 4 and MJ 5.

In the present paper we decompose Σ^{*} into canonical regions, "primitives," "caps," "annuli," "polar sectors," "cut sectors," etc., whose nature is determined by F^{*}. With F we associate integral indices $\nu(F)$ and $\mu(F)$ [defined in a later paper]. The existence of $P H$ functions u satisfying prescribed linear relations (1.0) depends upon these indices and upon the character of the decomposition of Σ^{*}.

[^0]
[^0]: 1-533807. Acta Mathematica. 91. Imprimé le 18 mai 1954.

