On the Dirichlet problem for Hessian equations by NEIL S. TRUDINGER(1) The Australian National University Canberra, Australia ## 1. Introduction In this paper we consider the classical solvability of the Dirichlet problem for nonlinear, second-order elliptic partial differential equations of the form, $$F(D^2u) \equiv f(\lambda[D^2u]) = \psi(x, u, Du), \tag{1.1}$$ in domains Ω in Euclidean *n*-space, \mathbf{R}^n , where f is a given symmetric function on \mathbf{R}^n , λ denotes the eigenvalues $\lambda_1, ..., \lambda_n$ of the Hessian matrix of second derivatives D^2u and ψ is a given function in $\Omega \times \mathbf{R} \times \mathbf{R}^n$. Equations of this type were treated by Caffarelli, Nirenberg and Spruck [2], for the case $\psi \equiv \psi(x)$, who demonstrated the existence of classical solutions for the Dirichlet problem, under various hypotheses on the function f and the domain Ω . Their results extended their previous work [1], and that of Krylov [13], Ivochkina [8] and others, on equations of Monge-Ampère type, $$F(D^2u) = \det D^2u = \psi(x, u, Du).$$ (1.2) Typical cases, embraced by [2] and treated as well by Ivochkina [9], are the elementary symmetric functions, $$f(\lambda) = S_k(\lambda) = \sum_{i_1 < i_2 < \dots < i_k} \lambda_{i_1} \dots \lambda_{i_k}, \tag{1.3}$$ k=1,...,n. Note that the case k=1 corresponds to Poisson's equation, while for k=n, we have the Monge-Ampère equation (1.2). If the function $\psi(x)$, boundary $\partial\Omega$ and boundary function ϕ are sufficiently smooth and ψ is uniformly positive in Ω , the classical Dirichlet problem, $$F(D^2u) = S_k(\lambda[D^2u]) = \psi$$ in Ω , $u = \phi$ on $\partial\Omega$. (1.4) ⁽¹⁾ Research supported by the Australian Research Council.