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1. Introduction

In this paper we consider the classical solvability of the Dirichlet problem for nonlinear,
second-order elliptic partial differential equations of the form,

F(D%u) = f(A\[D?u]) = ¢(x,u, Du), (1.1)

in domains §2 in Euclidean n-space, R™, where f is a given symmetric function on R",
X denotes the eigenvalues )y, ..., A, of the Hessian matrix of second derivatives D?u and
¥ is a given function in @ xR xR". Equations of this type were treated by Caffarelli,
Nirenberg and Spruck [2], for the case ¥=1(z), who demonstrated the existence of
classical solutions for the Dirichlet problem, under various hypotheses on the function f
and the domain Q. Their results extended their previous work [1}, and that of Krylov {13],
Ivochkina (8] and others, on equations of Monge-Ampére type,

F(D?u) =det D*u=1(x,u, Du). (1.2)

Typical cases, embraced by [2] and treated as well by Ivochkina [9], are the elementary
symmetric functions,

F=8N = D A, (1.3)

11 <ig<... <ip

k=1,...,n. Note that the case k=1 corresponds to Poisson’s equation, while for k=n, we
have the Monge-Ampére equation (1.2). If the function ¥(z), boundary /0 and boundary
function ¢ are sufficiently smooth and % is uniformly positive in 2, the classical Dirichlet
problem,

F(D?*u) = Sk (\[D%u])=% inQ,

1.4
u=¢ on 09, (14)
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