On the Dirichlet problem for Hessian equations

by

NEIL S. TRUDINGER(1)

The Australian National University
Canberra, Australia

1. Introduction

In this paper we consider the classical solvability of the Dirichlet problem for nonlinear, second-order elliptic partial differential equations of the form,

$$F(D^2u) \equiv f(\lambda[D^2u]) = \psi(x, u, Du), \tag{1.1}$$

in domains Ω in Euclidean *n*-space, \mathbf{R}^n , where f is a given symmetric function on \mathbf{R}^n , λ denotes the eigenvalues $\lambda_1, ..., \lambda_n$ of the Hessian matrix of second derivatives D^2u and ψ is a given function in $\Omega \times \mathbf{R} \times \mathbf{R}^n$. Equations of this type were treated by Caffarelli, Nirenberg and Spruck [2], for the case $\psi \equiv \psi(x)$, who demonstrated the existence of classical solutions for the Dirichlet problem, under various hypotheses on the function f and the domain Ω . Their results extended their previous work [1], and that of Krylov [13], Ivochkina [8] and others, on equations of Monge-Ampère type,

$$F(D^2u) = \det D^2u = \psi(x, u, Du).$$
 (1.2)

Typical cases, embraced by [2] and treated as well by Ivochkina [9], are the elementary symmetric functions,

$$f(\lambda) = S_k(\lambda) = \sum_{i_1 < i_2 < \dots < i_k} \lambda_{i_1} \dots \lambda_{i_k}, \tag{1.3}$$

k=1,...,n. Note that the case k=1 corresponds to Poisson's equation, while for k=n, we have the Monge-Ampère equation (1.2). If the function $\psi(x)$, boundary $\partial\Omega$ and boundary function ϕ are sufficiently smooth and ψ is uniformly positive in Ω , the classical Dirichlet problem,

$$F(D^2u) = S_k(\lambda[D^2u]) = \psi$$
 in Ω ,
 $u = \phi$ on $\partial\Omega$. (1.4)

⁽¹⁾ Research supported by the Australian Research Council.