CONTRIBUTION À LA THÉORIE DES NOMBRES PREMIERS.

PAR

HELGE VON KOCH

à STOCKHOLM.

Ce qui est peut-être le plus attrayant dans la théorie des nombres premiers, c'est le rapport profond qui existe entre ces nombres et les zéros imaginaires de la fonction $\zeta(s)$ de RIEMANN. Ce rapport, malgré tout l'intérêt qu'il a excité depuis l'apparition du mémoire de RIEMANN, n'est encore connu que très incomplètement.

Rappelons, en quelques mots, les résultats concernant la fonction numérique $\psi(x)$ de TCHEBYCHEFF qui correspondent aux progrès faits dans l'étude de la fonction $\zeta(s)$.

D'après RIEMANN, $(s-1)\zeta(s)$ est une fonction entière possédant les zéros réels

$$-2, -4, -6, \dots$$

et une infinité de zéros imaginaires

$$\varrho = \alpha + i\beta$$

où la partie réelle satisfait à la condition

$$\alpha < \tau$$

Tant que le signe d'égalité dans cette formule n'était pas exclu on ne pouvait pas aller plus loin que TCHEBYCHEFF. Tout ce qu'on savait c'était donc que $\frac{\psi(x)}{x}$ reste compris entre deux nombres fixes et que, si $\frac{\psi(x)}{x}$ a une limite pour $x = \infty$, cette limite est = 1.