A lattice version of the KP equation

by

D. GIESEKER(1)

University of California Los Angeles, CA, U.S.A.

1. Introduction

Let N and M be relatively prime integers. Let $V_{N,M}$ be the set of all real valued functions ψ on $\mathbb{Z} \times \mathbb{Z}$ satisfying $\psi(n+N,m)=\psi(n,m+M)=\psi(n,m)$. $V_{N,M}$ is a vector space of dimension NM over \mathbb{R} . Let A and B be functions from an interval I=(a,b) to $V_{N,M}$. A(n,m,t) will denote the value of A(t) at the point $(n,m) \in \mathbb{Z} \times \mathbb{Z}$. In § 3, we will define two explicit real polynomial maps $f_{N,M}$ and $g_{N,M}$ on $V_{N,M} \times V_{N,M} \times \mathbb{R}^3$ to $V_{N,M}$. We will investigate solutions A(t) and B(t) to the following differential-difference equation:

$$\frac{dA(t)}{dt} = f_{N,M}(A(t), B(t), \alpha, \beta, \gamma)$$
(1.1)

$$\frac{dB(t)}{dt} = g_{N,M}(A(t), B(t), \alpha, \beta, \gamma)$$
 (1.2)

for fixed α, β and γ . More intrisically, one may think of $f_{N,M}$ and $g_{N,M}$ as defining a vector field on $V_{N,M} \times V_{N,M}$ depending on parameters α, β and γ . Thus for any given t, $f_{N,M}(A(t), B(t), \alpha, \beta, \gamma)$ is a function on $\mathbb{Z} \times \mathbb{Z}$, and this function evaluated at (n, m) is a polynomial in α, β and γ and the numbers A(i, j, t) and B(i, j, t) which will turn out to be of degree 4, and $g_{N,M}(A(t), B(t), \alpha, \beta, \gamma)$ will turn out to be of degree 5. Actually these polynomials enjoy certain homogeneity properties explained in § 3.

These equations are derived from a certain algebro-geometric construction, which is in some sense a variant of a construction of Mumford and van Moerbeke (as will be explained in $\S 3$). This construction starts with certain algebraic curves X with a distinguished point P (with certain additional structure). Using X and this structure, we

⁽¹⁾ Partially supported by N.S.F. Grant DMS 89-04922.