The sharp Markov property of the Brownian sheet and related processes

by

ROBERT C. DALANG ${ }^{1}$) and
Tufis University
Medford, MA, U.S.A.

JOHN B. WALSH
University of British Columbia
Vancouver, British Columbia, Canada

0. Introduction

The Brownian sheet ($W_{t}, t \in \mathbf{R}_{+}^{2}$) has long been known to satisfy Paul Lévy's sharp Markov property with respect to all finite unions F of rectangles (see [W1, Ru]), meaning that
(0.1) $\mathscr{H}(F)$ and $\mathscr{H}\left(\vec{F}^{c}\right)$ are conditionally independent given $\mathscr{H}(\partial F)$,
where $\mathscr{H}(F)=\sigma\left(W_{t}, t \in F\right)$ represents the information one can obtain about the sheet by observing it only in the set F. However, (0.1) fails when F is the triangle $\left\{\left(t_{1}, t_{2}\right) \in \mathbf{R}_{+}^{2}\right.$: $\left.t_{1}+t_{2}<1\right\}$ [W1], leaving the impression that the sharp Markov property is valid only for a very restricted class of sets. In contrast, the weaker germ-field Markov property, in which one replaces $\mathscr{H}(\partial F)$ by the germ-field $\mathscr{H}^{*}(\partial F)=\cap \mathscr{H}(O)$ (where the intersection is over all open sets containing ∂F), is valid for all open sets in the plane [$\mathrm{Ro}, \mathrm{Nu}]$).

One natural explanation for this is the following: in the one-parameter setting, the Markov property of the solution of a stochastic differential equation is closely connected with uniqueness for the initial value problem. Something similar should be true in the plane. Now the Brownian sheet is the solution of a certain hyperbolic partial differential equation [W3], and its Markov property is closely connected to the uniqueness problem for the hyperbolic partial differential equation $\partial^{2} u / \partial x \partial y=0$. It is wellknown that the boundary data needed to pose the Cauchy problem for this equation are the values of the function on the boundary together with the normal derivative at non-

[^0]
[^0]: $\left.{ }^{(}{ }^{1}\right)$ The results presented here were obtained while this author was a visitor in the Department of Statistics, University of California at Berkeley and was supported by a National Science Foundation Postdoctoral Fellowship DMS-8807256.

