Behavior of the Bergman projection on the Diederich-Fornæss worm

by
DAVID E. BARRETT

University of Michigan
Ann Arbor, MI, U.S.A.

§ 1. Introduction

In this paper we show that the Bergman projection operator for certain smooth bounded pseudoconvex domains does not preserve smoothness as measured by Sobolev norms.

Let Ω be a smooth bounded pseudoconvex domain in \mathbf{C}^{n} and let $P^{(t)}$ denote the orthogonal projection from $L^{2}(\Omega)$ onto the Bergman subspace $B(\Omega)=L^{2}(\Omega) \cap \mathcal{O}(\Omega)$ with respect to the weighted norm $\|f\|^{(t)}=\left(\int_{D}|f(z)|^{2} e^{-t|k|} \|^{2} d V\right)^{1 / 2}$. Let $W^{k}(\Omega)$ denote the Sobolev space consisting of functions whose derivatives of order $\leqslant k$ are in $L^{2}(\Omega)$. An important result of Kohn [Ko1] implies that $P^{(t)}$ maps $W^{k}(\Omega)$ to $W^{k}(\Omega)$ when $t \geqslant t_{0}(k, \Omega)$. On the other hand, there is a large collection of results implying that for certain types of domains the unweighted Bergman projection $P=P^{(0)}$ preserves W^{k} for all $k \geqslant 0$. (See [FK] for the strictly pseudoconvex case; for results on weakly pseudoconvex domains the reader may consult [Ko 2], [Ca], [Si$]$ and the recent $[\mathrm{BSt1]},[\mathrm{Ch}]$ as well as the references cited therein. Most of these results are focused on the $\bar{\alpha}$-Neumann operator rather than P; see [BSt2] for the connection. Also, except for [Ko1], positive results in this area are typically valid for any choice of smooth positive weight function on $\bar{\Omega}$.)

The question of whether or not P is similarly well-behaved for all weakly pseudoconvex domains has remained open for many years. In this paper we show that this is not the case; in fact when Ω is the so-called "worm domain"' of Diederich and Fornæss then P does not map W^{k} to W^{k} when $k \geqslant \pi /$ (total amount of winding). This latter quantity is explained in section 4 below, where the construction of the worm is reviewed and the main result is proved. The proof depends on computations for a piecewise Levi-flat model domain depending in turn on certain one-dimensional computations; these are treated in sections 3 and 2, respectively. Section 5 contains additional remarks and questions.

