Acta Math., 168 (1992), 1-10

Behavior of the Bergman projection on the Diederich–Fornæss worm

by

DAVID E. BARRETT

University of Michigan Ann Arbor, MI, U.S.A.

§1. Introduction

In this paper we show that the Bergman projection operator for certain smooth bounded pseudoconvex domains does not preserve smoothness as measured by Sobolev norms.

Let Ω be a smooth bounded pseudoconvex domain in \mathbb{C}^n and let $P^{(t)}$ denote the orthogonal projection from $L^2(\Omega)$ onto the Bergman subspace $B(\Omega) = L^2(\Omega) \cap \mathcal{O}(\Omega)$ with respect to the weighted norm $||f||^{(t)} = (\int_D |f(z)|^2 e^{-t||z||^2} dV)^{1/2}$. Let $W^k(\Omega)$ denote the Sobolev space consisting of functions whose derivatives of order $\leq k$ are in $L^2(\Omega)$. An important result of Kohn [Ko1] implies that $P^{(t)}$ maps $W^k(\Omega)$ to $W^k(\Omega)$ when $t \geq t_0(k, \Omega)$. On the other hand, there is a large collection of results implying that for certain types of domains the unweighted Bergman projection $P = P^{(0)}$ preserves W^k for all $k \geq 0$. (See [FK] for the strictly pseudoconvex case; for results on weakly pseudoconvex domains the reader may consult [Ko2], [Ca], [Si] and the recent [BSt1], [Ch] as well as the references cited therein. Most of these results are focused on the $\overline{\partial}$ -Neumann operator rather than P; see [BSt2] for the connection. Also, except for [Ko1], positive results in this area are typically valid for any choice of smooth positive weight function on $\overline{\Omega}$.)

The question of whether or not P is similarly well-behaved for all weakly pseudoconvex domains has remained open for many years. In this paper we show that this is not the case; in fact when Ω is the so-called "worm domain" of Diederich and Fornæss then P does not map W^k to W^k when $k \ge \pi/(\text{total amount of winding})$. This latter quantity is explained in section 4 below, where the construction of the worm is reviewed and the main result is proved. The proof depends on computations for a piecewise Levi-flat model domain depending in turn on certain one-dimensional computations; these are treated in sections 3 and 2, respectively. Section 5 contains additional remarks and questions.

1-928182 Acta Mathematica 168. Imprimé le 6 février 1992