Normal forms for real surfaces in \mathbf{C}^{2} near complex tangents and hyperbolic surface transformations

by
JÜRGEN K. MOSER
Forschungsinstitut für Mathematik ETH, Zürich, Switzerland
University of Minnesota
Minneapolis, U.S.A.

0. Introduction

It is well known that the complex analytical properties of a real submanifold M in the complex space \mathbf{C}^{n} are most accessible through consideration of the complex tangents to M. The properties we have in mind are related to the behavior of holomorphic functions on or near M and to the behavior of M under biholomorphic transformation. The case in which M is a real hypersurface is most familiar, while much less is known for higher codimension. In this paper we consider the critical case of a real n dimensional manifold M in C^{n}, which we also assume to be real analytic. At a generic point M is locally equivalent to the standard \mathbf{R}^{n} in \mathbf{C}^{n}. However, near a complex tangent M may aquire a non-trivial local hull of holomorphy and other biholomorphic invariants.

We begin with the simplest non-trivial case, which is a surface $M^{2} \subset C^{2}$ with an isolated, suitably non-degenerate complex tangent. Here one already encounters a rich structure and non-trivial problems. In coordinates $z_{j}=x_{j}+i y_{j}, j=1,2, M$ may be written locally as

$$
\begin{aligned}
& R(z, \bar{z})=-z_{2}+q\left(z_{1}, \bar{z}_{1}\right)+\ldots=0 \\
& q=\gamma z_{1}^{2}+z_{1} \bar{z}_{1}+\gamma \bar{z}_{1}^{2}, \quad 0 \leqslant \gamma<\infty
\end{aligned}
$$

The z_{1}-axis is tangent to M at the origin. M, or more precisely, this complex tangent is said to be elliptic if $0 \leqslant \gamma<1 / 2$, hyperbolic if $1 / 2<\gamma$, or parabolic if $\gamma=1 / 2$. We shall prove the following theorem.

[^0]
[^0]: ${ }^{(1)}$ Alfred P. Sloan Fellow. Partially supported by NSF, Grant No. MCS 8100793.

