On the model companion of the theory of *e*-fold ordered fields

by

MOSHE JARDEN(1)

Tel-Aviv University, Tel-Aviv, Israel

0. Introduction

The present work is inspired by three papers, [11] of Van den Dries, [9] of Prestel and [5]. Van den Dries considers structures of the form $(K, P_1, ..., P_e)$, where K is a field and $P_1, ..., P_e$ are e orderings of the K. They are called, e-fold ordered fields. The appropriate first ordered language is denoted by \mathcal{L}_e . He proves that the theory of e-fold ordered fields in \mathcal{L}_e has a model companion \overline{OF}_e . The models $(K, P_1, ..., P_e)$ of \overline{OF}_e are characterized on one hand by being existentially closed in the family of e-fold, ordered fields, and by satisfying certain axioms of \mathcal{L}_e on the other hand.

In particular Van den Dries proves that the absolute Galois group G(K) of K is a pro-2-group generated by e involutions. If K is algebraic over \mathbb{Q} and R is a real closure of \mathbb{Q} , this implies that there exist $\sigma_1, \ldots, \sigma_e \in G(\mathbb{Q})$ such that $K = R^{\sigma_1} \cap \ldots \cap R^{\sigma_e}$. In general, if $\sigma_1, \ldots, \sigma_e \in G(\mathbb{Q})$, we write $\mathbb{Q}_\sigma = R^{\sigma_1} \cap \ldots \cap R^{\sigma_e}$ and denote by $P_{\sigma i}$ the ordering of \mathbb{Q} induced by the unique ordering of the real closed field R^{σ_i} . In this way we attain a family of e-fold ordered fields, $\mathcal{Q}_\sigma = (\mathbb{Q}_\sigma, P_{\sigma_1}, \ldots, P_{\sigma_e})$, indexed by $G(\mathbb{Q})^e$.

Geyer proves in [4] that for almost all $\sigma \in G(\mathbb{Q})^e$ (in the sense of the Haar measure of $G(\mathbb{Q})^e$), the group $G(\mathbb{Q}_{\sigma})$ is isomorphic to the free product, $\hat{D_e}$, of e copies of $\mathbb{Z}/2\mathbb{Z}$, in the category of profinite groups. This takes us away from the models of \overline{OF}_e and leads us in [5] to make the following

Definition. An e-fold ordered field $(K, P_1, ..., P_e)$ is said to be a Geyer-field of corank e if the following conditions hold:

- (a) If V is an absolutely irreducible variety defined over K and if each of the orderings P_i extends to the function field of V, then V has a K-rational point.
 - (β) The orderings $P_1, ..., P_e$ induce distinct topologies on K.
 - (γ) We have $G(K) \cong \hat{D}_e$.

⁽¹⁾ Partially supported by the fund for basic research administered by the Israel Academy of Sciences and Humanities.