Harmonic volumes

by BRUNO HARRIS $\left.{ }^{(}{ }^{(}\right)$
Brown University Providence, RI, U.S.A.

1. Introduction

Let X be a compact Riemann surface and $d h_{i}, i=1,2,3$, three real harmonic 1 -forms on X satisfying

$$
\begin{gather*}
\int_{X} d h_{i} \wedge d h_{j}=0, \quad i, j=1,2,3, \tag{1.1}\\
\int_{\gamma} d h_{i} \in \mathbf{Z}, \text { for any 1-cycle } \gamma \text { on } x . \tag{1.2}
\end{gather*}
$$

To this triple of harmonic 1 -forms, we associate a point in \mathbf{R} / \mathbf{Z}, denoted $I\left(d h_{1}, d h_{2}, d h_{3}\right)$, which can be defined in two equivalent ways: first, as an iterated integral

$$
\begin{equation*}
\int_{\gamma}\left(h_{1} d h_{2}-\eta_{12}\right) \bmod \mathbf{Z} \tag{1.3}
\end{equation*}
$$

where γ is a path on X Poincare-dual to the cohomology class of $d h_{3}, h_{1}$ is a function on γ obtained by integrating $d h_{1}$, and η_{12} is a 1 -form on X satisfying $d \eta_{12}=d h_{1} \wedge d h_{2}$ (and orthogonal to all closed 1 -forms); second, as a volume $\bmod \mathrm{Z}$: namely by (1.2), we can integrate the $d h_{i}$ on X to obtain $h_{i}: X \rightarrow \mathbf{R} / \mathbf{Z}$ which are harmonic. Then $h=\left(h_{1}, h_{2}, h_{3}\right)$: $X \rightarrow \mathbf{R}^{3} / \mathbf{Z}^{3}=T^{3}$, and it follows easily from (1.1) that $h(X)$, regarded as a singular 2-cycle, bounds a singular 3 -chain c_{3} (unique mod integral 3 -cycles); we can then take the volume of $c_{3}(\bmod \mathrm{Z})$ to define $I\left(d h_{1}, d h_{2}, d h_{3}\right)$: we call this a "harmonic volume".
$\left.{ }^{(}{ }^{(}\right)$Supported by NSF Grant No. MCS 79-04905 to Brown University.

