Acta Math., 183 (1999), 45–70 © 1999 by Institut Mittag-Leffler. All rights reserved

Convexity estimates for mean curvature flow and singularities of mean convex surfaces

by

and

GERHARD HUISKEN

CARLO SINESTRARI

Universität Tübingen Tübingen, Germany

Università di Roma "Tor Vergata" Rome, Italy

1. Introduction

Let $F_0: \mathcal{M} \to \mathbf{R}^{n+1}$ be a smooth immersion of a closed *n*-dimensional hypersurface of nonnegative mean curvature in Euclidean space, $n \ge 2$. The evolution of $\mathcal{M}_0 = F_0(\mathcal{M})$ by mean curvature flow is the one-parameter family of smooth immersions $F: \mathcal{M} \times [0, T] \to \mathbf{R}^{n+1}$ satisfying

$$\frac{\partial F}{\partial t}(p,t) = -H(p,t)\nu(p,t), \quad p \in \mathcal{M}, \ t \ge 0,$$
(1.1)

$$F(\cdot,0) = F_0, \tag{1.2}$$

where H(p,t) and $\nu(p,t)$ are the mean curvature and the outer normal respectively at the point F(p,t) of the surface $\mathcal{M}_t = F(\cdot,t)(\mathcal{M})$. The signs are chosen such that $-H\nu = \vec{H}$ is the mean curvature vector and the mean curvature of a convex surface is positive.

For closed surfaces the solution of (1.1)-(1.2) exists on a finite maximal time interval $[0, T[, 0 < T < \infty, \text{ and the curvature of the surfaces becomes unbounded for <math>t \rightarrow T$. It is important to obtain a detailed description of the singular behaviour for $t \rightarrow T$, a future goal being the topologically controlled extension of the flow past singularities.

In the present paper we use the assumption of nonnegative mean curvature to derive new a priori estimates from below for all other elementary symmetric functions of the principal curvatures, strong enough to conclude that any rescaled limit of a singularity is (weakly) convex.

Let $\lambda = (\lambda_1, ..., \lambda_n)$ be the principal curvatures of the evolving hypersurfaces \mathcal{M}_t , and let

$$S_k(\lambda) = \sum_{1 \leqslant i_1 < i_2 < \ldots < i_k \leqslant n} \lambda_{i_1} \lambda_{i_2} \ldots \lambda_{i_k}$$