NECESSARY CONDITIONS FOR LOCAL SOLVABILITY OF HOMOGENEOUS LEFT INVARIANT DIFFERENTIAL OPERATORS ON NILPOTENT LIE GROUPS

BY

L. CORWIN(¹) and L. P. ROTHSCHILD(¹), (²)

Rutgers University University of Wisconsin-Madison New Brunswick, N. J., U.S.A. Wisconsin, U.S.A.

1. Introduction and allegro

A differential operator L is *locally solvable* at a point x_0 if there exists a neighborhood U of x_0 such that

$$Lu(x) = f(x), \quad \text{all } x \in U,$$

has a solution $u \in C^{\infty}(U)$ for any $f \in C_0^{\infty}(U)$. We shall give necessary conditions for local solvability for some classes of left invariant differential operators on nilpotent Lie groups.

Let G be a connected, simply connected, nilpotent Lie group which admits a family of dilations δ_r , r > 0, which are automorphisms. The δ_r extend to automorphisms of the complexified universal enveloping algebra $U(\mathfrak{g})$, where \mathfrak{g} is the Lie algebra of G. The elements of $U(\mathfrak{g})$ may be identified with the left invariant differential operators on G. An element $L \in U(\mathfrak{g})$ is homogeneous of degree d if $\delta_r(L) = r^d L$, all r > 0. We equip G with a norm, $| \cdot |$, which is homogeneous in the sense that if $U_s = \{x \in G : |x| \le s\}$, then $\delta_r(U_s) = U_{rs}$.

We shall prove two main theorems concerning the local solvability of a homogeneous element $L \in U(\mathfrak{g})$, with transpose L^{τ} . The first says that L is unsolvable if ker L^{τ} contains a function in S(G), the Schwartz space of G. The second result uses the first to obtain a representation-theoretic criterion for unsolvability of L. Let \hat{G} be the set of all irreducible unitary representations of G. If there is an open subset of representations π in \hat{G} such that

- (1) ker $\pi(L^{\tau})$ contains a nonzero C^{∞} vector, and
- (2) ker $\pi(L^{\tau})$ varies smoothly with π ,

⁽¹⁾ Partially supported by NSF grants.

⁽²⁾ Partially supported by an Alfred P. Sloan Fellowship.