SUBSPACES AND QUOTIENTS OF $l_{p} \oplus l_{2}$ AND $X_{p}{ }^{\left({ }^{(}\right)}$

BY

W. B. $\operatorname{JOHNSON}\left({ }^{2}\right)$ and E. ODELL $\left({ }^{3}\right)$

Ohio State University

Columbus, Ohio, U.S.A.

University of Texas
Austin, Texas, U.S.A.

0. Introduction

Much progress has been made in recent years in describing the structure of $L_{p}=L_{p}[0,1]$, and, in particular, the \mathcal{L}_{p} spaces (complemented subspaces of L_{p} which are not Hilbert space) have been studied extensively. The obvious or natural \mathcal{L}_{p} spaces are $l_{p}, l_{p} \oplus l_{2},\left(l_{2} \oplus l_{2} \oplus \ldots\right)_{p}$ and L_{p} itself. These were the only known examples until H. P. Rosenthal [18] discovered the space X_{p} (see below). This space perhaps seemed pathological when first introduced; however, it now appears that X_{p} plays a fundamental role in the study of L_{p} and \mathcal{L}_{p} spaces.

The discovery of X_{p} permitted the list of separable \mathcal{L}_{p} spaces to be increased to 9 in number [18]. Then G. Schechtman [20], again using X_{p}, showed that there are an infinite number of mutually non-isomorphic separable \mathcal{L}_{p} spaces, and recently Bourgain, Rosenthal and Schechtman [2] succeeded in constructing uncountably many such spaces. It now appears improbable that a complete classification of the separable \mathcal{L}_{p} spaces will be obtained. However, it might be possible to classify the "smaller" \mathcal{L}_{p} spaces. For example it was proved in [11] that the only \mathcal{L}_{p} subspace of $l_{p}(1<p<\infty)$ is l_{p}. Also all complemented subspaces of $l_{p} \oplus l_{2}$ and $\left(l_{2} \oplus l_{2} \oplus \ldots\right)_{p}$ are known (see [4], [21] and [17]). (X_{p} is, for $p>2$, a \mathcal{L}_{p} space which embeds into $l_{p} \oplus l_{2}$ and thus into $\left(l_{2} \oplus l_{2} \oplus \ldots\right)_{p}$, but does not embed into these spaces as a complemented subspace.)

One question with which we are concerned in this paper is "What are the \mathcal{L}_{p} subspaces X of $l_{p} \oplus l_{2}(1<p \neq 2<\infty) ?$?" We answer this in Section 2 for those X with an unconditional basis (although every separable \mathcal{L}_{p} space is known to have a basis [10], it is a major un-

[^0]
[^0]: ${ }^{(1)}$ Part of the research for this paper was done while both authors were guests of the Institute for Advanced Studies of the Hebrew University of Jerusalem.
 $\left({ }^{2}\right)$ Supported in part by NSF MCS76-06565 and MCS79-03042.
 ${ }^{(3)}$ Supported in part by NSF MCS78-01344.

