SUBSPACES AND QUOTIENTS OF $l_p \oplus l_2$ AND $X_p^{(1)}$

BY

W. B. JOHNSON(²) and E. ODELL(³)

Ohio State University University of Texas Columbus, Ohio, U.S.A. Austin, Texas, U.S.A

0. Introduction

Much progress has been made in recent years in describing the structure of $L_p = L_p[0, 1]$, and, in particular, the \mathcal{L}_p spaces (complemented subspaces of L_p which are not Hilbert space) have been studied extensively. The obvious or natural \mathcal{L}_p spaces are $l_p, l_p \oplus l_2, (l_2 \oplus l_2 \oplus ...)_p$ and L_p itself. These were the only known examples until H. P. Rosenthal [18] discovered the space X_p (see below). This space perhaps seemed pathological when first introduced; however, it now appears that X_p plays a fundamental role in the study of L_p and \mathcal{L}_p spaces.

The discovery of X_p permitted the list of separable \mathcal{L}_p spaces to be increased to 9 in number [18]. Then G. Schechtman [20], again using X_p , showed that there are an infinite number of mutually non-isomorphic separable \mathcal{L}_p spaces, and recently Bourgain, Rosenthal and Schechtman [2] succeeded in constructing uncountably many such spaces. It now appears improbable that a complete classification of the separable \mathcal{L}_p spaces will be obtained. However, it might be possible to classify the "smaller" \mathcal{L}_p spaces. For example it was proved in [11] that the only \mathcal{L}_p subspace of l_p $(1 \le p \le \infty)$ is l_p . Also all complemented subspaces of $l_p \oplus l_2$ and $(l_2 \oplus l_2 \oplus ...)_p$ are known (see [4], [21] and [17]). $(X_p$ is, for p > 2, a \mathcal{L}_p space which embeds into $l_p \oplus l_2$ and thus into $(l_2 \oplus l_2 \oplus ...)_p$, but does not embed into these spaces as a complemented subspace.)

One question with which we are concerned in this paper is "What are the \mathcal{L}_p subspaces X of $l_p \oplus l_2$ $(1 \le p \pm 2 \le \infty)$?" We answer this in Section 2 for those X with an unconditional basis (although every separable \mathcal{L}_p space is known to have a basis [10], it is a major un-

^{(&}lt;sup>1</sup>) Part of the research for this paper was done while both authors were guests of the Institute for Advanced Studies of the Hebrew University of Jerusalem.

^{(&}lt;sup>2</sup>) Supported in part by NSF MCS76-06565 and MCS79-03042.

⁽³⁾ Supported in part by NSF MCS78-01344.