ANALYTIC HYPOELLIPTICITY OF THE $\overline{\partial}$ -NEUMANN PROBLEM AND EXTENDABILITY OF HOLOMORPHIC MAPPINGS

BY

STEVEN R. BELL(1)

Princeton University, New Jersey, U.S.A.

1. Introduction

In the theory of functions of one complex variable, the proof of the theorem which states that a proper holomorphic mapping between domains with real analytic boundaries extends holomorphically past the boundary consists of two relatively simple steps: first prove that such mappings extend continuously to the boundary; then apply the classical Schwarz reflection principle. Attempts to generalize these techniques to mappings in several complex variables have not been entirely successful. The principle reasons for this are: (1) there is not a satisfactory reflection principle for weakly pseudoconvex hypersurfaces in \mathbb{C}^n , and (2) proper maps in \mathbb{C}^n may branch at boundary points. In this paper, we attempt to expose the connection between the problem of extending proper holomorphic mappings and the real analytic hypoellipticity of the $\bar{\partial}$ -Neumann problem. To be precise, we prove that if D_1 and D_2 are bounded domains with real analytic boundaries, and if the $\bar{\partial}$ -Neumann problem for D_1 is globally real analytic hypoelliptic, then any proper holomorphic mapping f of D_1 onto D_2 extends holomorphically to a neighborhood of $\overline{D_1}$. This result allows us to prove that there can be no proper holomorphic mapping of a bounded domain with real analytic boundary which is strictly pseudoconvex onto such a domain which is weakly pseudoconvex. When our techniques are localized, we are able to prove that if $f: D_1 \rightarrow D_2$ is a proper holomorphic mapping between bounded pseudoconvex domains with real analytic boundaries, then f maps the set Γ of strictly pseudoconvex boundary points of D_1 into the set of strictly pseudoconvex boundary points of D_2 . Furthermore, f extends holomorphically past Γ and is unbranched on Γ .

It should be pointed out that the general problem of proving the global analytic hypoellipticity of the $\bar{\partial}$ -Neumann problem in a weakly pseudoconvex domain with real

⁽¹⁾ Research supported by NSF grant no. MCS 80-17205.