QUASICONFORMAL MAPPINGS AND EXTENDABILITY OF FUNCTIONS IN SOBOLEV SPACES

BY

PETER W. JONES(1)

University of Chicago, Chicago, Illinois, U.S.A.

§1. Introduction

Let \mathcal{D} be an open connected domain in \mathbb{R}^n , $n \ge 2$. If α is a multi-index, $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n) \in \mathbb{Z}^n_+$, the length of α , denoted by $|\alpha|$, is the integer $\sum_{j=1}^n \alpha_j$ and $D^{\alpha} = (\partial/\partial x_1)^{\alpha_1} ... (\partial/\partial x_n)^{\alpha_n}$. A locally integrable function f on \mathcal{D} has a weak derivative of order α if there is a locally integrable function (denoted by $D^{\alpha}f$) such that

$$\int_{\mathcal{D}} f(D^{\alpha}\varphi) \, dx = (-1)^{|\alpha|} \int_{\mathcal{D}} (D^{\alpha}f) \, \varphi \, dx$$

for all C^{∞} functions φ with compact support in \mathcal{D} . For $1 \leq p \leq \infty$, $k \in \mathbb{N}$, $L_k^p(\mathcal{D})$ is the Sobolev space of functions having weak derivatives of all orders α , $|\alpha| \leq k$, and satisfying

$$\|f\|_{L^p_k(\mathcal{D})} = \sum_{\mathbf{0} \leq |\alpha| \leq k} \|D^{\alpha}f\|_{L^p(\mathcal{D})} < +\infty.$$

An extension operator on $L_k^p(\mathcal{D})$ is a bounded linear operator

$$\Lambda: L^p_k(\mathcal{D}) \to L^p_k(\mathbf{R}^n) \equiv L^p_k$$

such that $\Lambda f|_{\mathcal{D}} = f$ for all $f \in L_k^p(\mathcal{D})$. We say that \mathcal{D} is an extension domain for Sobolev spaces (E.D.S.) if whenever $1 \leq p \leq \infty$, $k \in \mathbb{N}$, there is an extension operator for $L_k^p(\mathcal{D})$.⁽²⁾ The following theorem is by now well known.

⁽¹⁾ N.S.F. grant MCS-7905036.

⁽²⁾ We do not require Λ to be an extension operator also on $L^p_m(\mathcal{D})$ for m < k. In fact, the one which will be constructed does not have that property.