Quasiconformal maps of cylindrical domains

by

JUSSI VÄISÄLÄ

University of Helsinki Helsinki, Finland

1. Introduction

1.1. We shall consider domains $D \subset \mathbb{R}^3$ which are of the form $G \times \mathbb{R}^1$ where G is a domain in the plane \mathbb{R}^2 . The main problem considered in this paper is: When is $G \times \mathbb{R}^1$ quasiconformally equivalent to the round ball B^3 ? It is well known that this is true if G is the disk B^2 . Indeed, the sharp lower bound $q_0 = K_O(B^2 \times \mathbb{R}^1)$ for the outer dilatation $K_O(f)$ for quasiconformal maps $f: B^2 \times \mathbb{R}^1 \to B^3$ is explicitly known:

$$q_0 = \frac{1}{2} \int_0^{\pi/2} (\sin t)^{-1/2} dt = 1.31102...;$$

see [GV, Theorem 8.1]. We shall show that there is a quasiconformal map $f: G \times \mathbb{R}^1 \to B^3$ if and only if G satisfies the *internal chord-arc condition*, which is recalled in Section 4 of this paper. It implies that the boundary of G is rectifiable.

We also show that if G is bounded then $K_O(f) \ge q_0$, and the equality is possible only if G is a round disk. For unbounded domains the corresponding lower bound is trivially one, which is attained when G is a half plane.

It is of some interest to note that although the result deals solely with quasiconformality, its proof will involve two other classes of maps: the locally bilipschitz maps and the quasisymmetric maps, the latter notion considered in a suitable metric of the product space $\partial^* G \times \mathbb{R}^1$ where $\partial^* G$ is the prime and end boundary of G.

The main result is proved in Section 5 and the dilatation estimate in Section 6. Before that we give preliminary results on John domains, quasisymmetric maps, prime ends and chord-arc conditions. The following auxiliary results may have independent interest: Theorem 2.9 gives a useful condition for a weakly quasisymmetric map to be quasisymmetric. Theorem 2.20 gives a sufficient condition for a quasiconformal map to