Multiplicities of algebraic linear recurrences

by
\section*{HANS PETER SCHLICKEWEI}

Universität Ulm
Ulm, Germany

1. Introduction

Let n be a natural number. We shall study linear recurrence sequences

$$
\begin{equation*}
u_{m+n}=\nu_{n-1} u_{m+n-1}+\nu_{n-2} u_{m+n-2}+\ldots+\nu_{0} u_{m}, \quad m=0,1,2, \ldots \tag{1.1}
\end{equation*}
$$

Here we assume that $\nu_{n-1}, \ldots, \nu_{0}$ are elements of \mathbf{C} with $\nu_{0} \neq 0$. We assume moreover that the initial values u_{0}, \ldots, u_{n-1} of our sequence have $\left|u_{n-1}\right|+\ldots+\left|u_{0}\right|>0$. Let

$$
\begin{equation*}
G(z)=z^{n}-\nu_{n-1} z^{n-1}-\ldots-\nu_{0} \tag{1.2}
\end{equation*}
$$

be the companion polynomial of the recurrence (1.1) and write

$$
\begin{equation*}
G(z)=\prod_{i=1}^{r}\left(z-\alpha_{i}\right)^{\varrho_{i}} \tag{1.3}
\end{equation*}
$$

with distinct numbers $\alpha_{1}, \ldots, \alpha_{r}$. We call n the order and r the rank of the recurrence (1.1). Before we state our results, we shall recall a few facts about linear recurrence sequences. An excellent account on this topic may be found in the introductory Chapter C of Shorey and Tijdeman [13]. In the sequel we quote some of the theorems collected there.

Let $\left(u_{m}\right)_{m=0}^{\infty}$ be a sequence satisfying relation (1.1) with $\nu_{0} \neq 0$. For $i=1, \ldots, r$ let α_{i} and ϱ_{i} be determined by (1.2) and (1.3) where the numbers $\alpha_{1}, \ldots, \alpha_{r}$ are distinct. Then there exist uniquely determined polynomials $f_{i} \in \mathbf{Q}\left(u_{0}, \ldots, u_{n-1}, \nu_{0}, \ldots, \nu_{n-1}, \alpha_{1}, \ldots, \alpha_{r}\right)[z]$ of degree $\leqslant \varrho_{i}-1(i=1, \ldots, r)$ such that

$$
\begin{equation*}
u_{m}=\sum_{i=1}^{r} f_{i}(m) \alpha_{i}^{m}, \quad m=0,1,2, \ldots \tag{1.4}
\end{equation*}
$$

