Estimates for the $\bar{\partial}$ -Neumann problem in pseudoconvex domains of finite type in \mathbb{C}^2

by

D.-C. CHANG

A. NAGEL

and

E. M. STEIN(1)

University of Maryland College Park, MD, U.S.A.

University of Wisconsin Madison, WI, U.S.A. Princeton University Princeton, NJ, U.S.A.

Contents

§ 0.	Introduction	153
§ 1.	Dirichlet to Neumann operators for elliptic systems	157
§ 2.	\square on (0,1)-forms and the $\bar{\partial}$ -Neumann conditions for domains in \mathbb{C}^2	166
	The boundary operator \Box^+ for the $\bar{\partial}$ -Neumann problem	
§4.	Invertibility of \Box^+ and \Box^- and their relation with $\Box_b \ldots \ldots$	178
§ 5.	A parametrix for the δ-Neumann problem	190
§ 6.	Commutation properties	196
§ 7.	Estimates for the $\bar{\partial}$ -Neumann operator	206
§8.	Estimates of Henkin-Skoda type	212
§9.	Zeros of holomorphic functions of Nevanlinna class	218
	References	227

§0. Introduction

The object of this paper is to construct a parametrix for the $\bar{\partial}$ -Neumann problem for arbitrary bounded pseudoconvex domains in \mathbb{C}^2 of finite type, and to use this parametrix to obtain sharp regularity results for the associated Neumann operator and for solutions of $\bar{\partial} u = f$. As an application, we obtain an extension of the Henkin-Skoda theorem, which characterizes the zero sets of functions in the Nevanlinna class in strictly pseudoconvex domains, to pseudoconvex domains of finite type in \mathbb{C}^2 .

The $\bar{\partial}$ -Neumann problem is a boundary value problem for an elliptic system of partial differential equations. Let $\Omega \subset \mathbb{C}^n$ be a smoothly bounded domain. Let U be a neighborhood of the boundary $\partial \Omega$ and let $\varrho: U \to \mathbb{R}$ be a defining function so that

⁽¹⁾ All three authors are supported by grants from the National Science Foundation.