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1. Introduction
1.1. Results

One of the most interesting results in value distribution theory is the defect relation
obtained by R. Nevanlinna: If f is a non-constant meromorphic function on the complex
plane C, then for an arbitrary collection of distinct ai,...,a,€P?, the following defect
relation holds:
q
> _(6ai, ))+6(ai, /) <2. (1.1.1)
i=1

Here, as usual in Nevanlinna theory, the terms &(a;, f) and 6(a;, f) are defined by

s N(T,ai,f)
é(ai, f) —hrn_lg}f(l—w),

. N(T,ai,f)—N('f"aivf)
0(ai, f) —hfgg.}f T(r, f) ’




