The second main theorem for small functions and related problems

by

KATSUTOSHI YAMANOI

Kyoto University Kyoto, Japan

Contents

1. Introduction	
2. Derivations of Theorem 1 from Theorem 3, and Theorem 3	orem 3 from
Theorem 4	
3. Preliminaries for the proof of Theorem 4	
4. Local value distribution	
5. Lemmas for division and summation	
6. Conclusion of the proof of Theorem 4	
7. The proof of Corollary 2	
8. The proof of Theorem 2	
9. The height inequality for curves over function fields .	
References	

1. Introduction

1.1. Results

One of the most interesting results in value distribution theory is the defect relation obtained by R. Nevanlinna: If f is a non-constant meromorphic function on the complex plane \mathbf{C} , then for an arbitrary collection of distinct $a_1, ..., a_q \in \mathbf{P}^1$, the following defect relation holds:

$$\sum_{i=1}^{q} (\delta(a_i, f) + \theta(a_i, f)) \le 2. \tag{1.1.1}$$

Here, as usual in Nevanlinna theory, the terms $\delta(a_i, f)$ and $\theta(a_i, f)$ are defined by

$$\begin{split} \delta(a_i,f) = & \liminf_{r \to \infty} \left(1 - \frac{N(r,a_i,f)}{T(r,f)} \right), \\ \theta(a_i,f) = & \liminf_{r \to \infty} \frac{N(r,a_i,f) - \overline{N}(r,a_i,f)}{T(r,f)}, \end{split}$$