Solving the quintic by iteration

by

PETER DOYLE(1)

and

CURT McMULLEN(2)

Princeton University Princeton, NJ, U.S.A. Princeton University Princeton, NJ, U.S.A.

1. Introduction

According to Dickson, Euler believed every algebraic equation was solvable by radicals [2]. The quadratic formula was known to the Babylonians; solutions of cubic and quartic polynomials by radicals were given by Scipione del Ferro, Tartaglia, Cardano and Ferrari in the mid-1500s. Abel's proof of the insolvability of the general quintic polynomial appeared in 1826 [1]; later Galois gave the exact criterion for an equation to be solvable by radicals: its Galois group must be solvable. (For a more complete historical account of the theory of equations, see van der Waerden [20], [21].)

In this paper, we consider solving equations using generally convergent purely iterative algorithms, defined by Smale [17]. Such an algorithm assigns to its input data v a rational map $T_v(z)$, such that $T_v^n(z)$ converges for almost all v and z; the limit point is the output of the algorithm.

This context includes the classical theory of solution by radicals, since *n*th roots can be reliably extracted by Newton's method.

In [12] a rigidity theorem is established that implies the maps $T_v(z)$ for varying v are all conformally conjugate to a fixed model f(z). Thus the Galois theory of the output of T must be implemented by the conformal automorphism group $\mathrm{Aut}(f)$, a finite group of Möbius transformations.

The classification of such groups is well-known: Aut(f) is either a cyclic group, dihedral group, or the group of symmetries of a regular tetrahedron, octahedron or

⁽¹⁾ On leave from Bell Labs; research supported by an N.S.F. Postdoctoral Fellowship.

⁽²⁾ Research supported by the Institute for Advanced Study.